
  

A WAVE-CHAOTIC APPROACH TO PREDICTING AND MEASURING 

ELECTROMAGNETIC FIELD QUANTITIES IN COMPLICATED ENCLOSURES 

 

Sameer D. Hemmady, Doctor of Philosophy, 2006 

Dept. of Electrical Engineering, University of Maryland- College Park  

MD 20742, USA 

 

 
 

 



  

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank



  

 

 
 

ABSTRACT 
 
 
 

 
Title of Document: A WAVE-CHAOTIC APPROACH TO 

PREDICTING AND MEASURING 
ELECTROMAGNETIC FIELD QUANTITIES       

IN COMPLICATED ENCLOSURES 
  
 Sameer D. Hemmady, Doctor of Philosophy, 2006 
  
Directed By: Dr. Steven M. Anlage 

Professor- Dept. of Physics 
Affiliate Faculty- Dept. of Electrical Engineering 

 
 
 The coupling of short-wavelength electromagnetic waves into large 

complicated enclosures is of great interest in the field of electromagnetic 

compatibility engineering. The intent is to protect sensitive electronic devices housed 

within these enclosures from the detrimental effects of high-intensity external 

electromagnetic radiation penetrating into the enclosure (which acts as a resonant 

cavity) through various coupling channels (or ports). The Random Coupling Model 

introduced by Zheng, Antonsen and Ott is a stochastic model where the mechanism of 

the coupling process is quantified by the non-statistical “radiation impedance” of the 

coupling-port, and the field variations within the cavity are conjectured to be 

explained in a statistical sense through Random Matrix Theory- by assuming that the 

waves possess chaotic ray-dynamics within the cavity.   

The Random Coupling Model in conjunction with Random Matrix Theory 

thus makes explicit predictions for the statistical aspect (Probability Density 



  

Functions-PDFs) of the impedance, admittance and scattering fluctuations of waves 

within such wave-chaotic cavities. More importantly, these fluctuations are expected 

to be universal in that their statistical description depends only upon the value of a 

single dimensionless cavity loss-parameter. This universality in the impedance, 

admittance and scattering properties is not restricted to electromagnetic systems, but 

is equally applicable to analogous quantities in quantum-mechanical or acoustic 

systems, which also comprise of short-wavelength waves confined within 

complicated-shaped potential wells or acoustic-resonators. 

 In this dissertation, I will experimentally show the validity of the “radiation 

impedance” to accurately quantify the port-coupling characteristics. I will 

experimentally prove the existence of these universal fluctuations in the impedance, 

admittance and scattering properties of quasi-two-dimensional and three-dimensional 

wave-chaotic systems driven by one-port or two-ports, and validate that their 

statistical nature is described through Random Matrix Theory. Finally, I will utilize 

the Random Coupling Model to formulate a prediction-algorithm to determine the 

shape and scales of induced voltages PDFs at specific points within complicated 

enclosures, such as computer boxes, when irradiated by high-intensity, short-

wavelength electromagnetic energy. The insight gained from the experimental 

validation of the Random Coupling Model allows one to conceive of certain design-

guidelines for cavity-enclosures that are more resistant to attack from an external 

short-wavelength electromagnetic source. 



  

 

 
 
 
 
 
 
 
 

A WAVE-CHAOTIC APPROACH TO PREDICTING AND MEASURING 
ELECTROMAGNETIC FIELD QUANTITIES IN COMPLICATED ENCLOSURES   
 
 
 

By 
 
 

Sameer D. Hemmady 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2006 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Steven M. Anlage, Chair 
Professor Thomas M. Antonsen Jr. 
Professor Edward Ott 
Professor Victor Granatstein 
Professor Daniel P. Lathrop 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Sameer D. Hemmady 

2006 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Dedication 

 

 

 

 

 

 

 

 

“To my dearest Mom and Dad, my adorable sister Karishma, and my cherished soul-

mate Caroline, for their love, encouragement and unwavering support through all 

these years…” 



 

 iii 
 

Acknowledgements 

 It seems my surreal journey through graduate-school is finally coming to an 

end. Looking back over the years, it was one filled with moments of elation, 

depression, frustration and bouts of sheer terror especially during the onset of the 

mid-terms and final examinations. But through it all, I have been truly blessed with 

the unconditional love of my family, the continual encouragement and advice of my 

faculty-advisors, and the unfaltering support of my colleagues and friends that has 

gotten me this far. 

 I am truly at a loss for words to express my gratitude towards my research-

advisor, Prof. Anlage- but I will try my best. I sincerely thank Prof. Anlage for all the 

time and effort he has dedicated these past four years to instill in me an appreciation 

for wave-chaos physics and the experimental aspects of microwave and RF 

engineering. Through his jovial nature, patient guidance and unabated enthusiasm, he 

created a highly dynamic environment in the lab which pushed me to challenge 

myself and strive harder to fulfill my research pursuits. His steadfast commitment to 

provide me with the best technical advice and state-of-the-art measurement devices 

and equipment has been one of the major contributory factors that have made my 

research-project a success. I strongly believe that my interaction with him has given 

me the confidence to face tomorrow’s challenges in my professional career with a 

positive outlook. Thank You, Prof. Anlage for everything you’ve done for me! 

 On equal footing, I would also like to thank Prof. Antonsen and Prof. Ott for 

their invaluable advice and teachings which have cultivated in me a deeper 

understanding of the aspects of theoretical wave-physics and electromagnetism. Our 



 

 iv 
 

weekly lunch-meetings at the Stamp Union are one of the things I will miss most 

once I leave graduate school. I thank Dr. Gaudet, Dr. Harrison, and Prof. Schamiloglu 

for their useful suggestions, feedbacks and opportunities to present my work in New 

Mexico. I would also like to thank Henry (Xing Zheng), James Hart, Chris Bertand 

and Michael Johnson for their valued help and support during all phases of my 

research-project. Thanks guys! 

 My gratitude also goes out to Prof. Granatstein, Prof. Lathrop, Prof. 

Goldsman, Prof. Dagenais, John Rodgers, Prof. Melngailis, Prof. Newcomb and Prof. 

Dellomo, for all the knowledge I have gained through their courses and through 

casual discussions in the A. V. Williams and IREAP hallways. I would also like to 

thank my fellow “lab-rats”- John Lee, Atif, Mike, Dragos, Hua, Xu, Yi Qi, Nathan, 

Sudeep, Josh, Hanhee, Gus, Dyan and Todd for all their help and fascinating 

discussions on a wide spectrum of topics ranging from non-linear pulses in optical 

fibers to creating bottle-rockets using Coca-Cola and Mentos! 

   On a more personal note, I would like to thank my Mom and Dad for their 

tender affection, moral support, and the countless personal-sacrifices they have 

willingly endured so that I could procure my doctorate degree today. I also thank my 

cuddly sister Karishma and my “sweet Caroline” for their loving-care, encouragement 

and for standing by me through thick and thin, these past years. All that I have 

achieved today would just not have been possible without the backing of my family. 

Last but not least, I would like to thank all my dear friends from undergrad and grad 

school for being there for me. I consider myself really fortunate to have friends like 

you! 



 

 v 
 

Table of Contents 
 
 

Dedication ..................................................................................................................... ii 

Acknowledgements...................................................................................................... iii 

Table of Contents.......................................................................................................... v 

List of Figures ............................................................................................................... x 

Chapter 1: Introduction ................................................................................................. 1 

1.1 Need for Statistical Electromagnetism................................................................ 4 

1.2 Wave Chaos ........................................................................................................ 9 

1.3 Universal Aspects of Wave-Chaotic Systems................................................... 12 

1.4 Random Matrix Theory..................................................................................... 16 

1.5 Outline of the Dissertation ................................................................................ 18 

Chapter 2: The Random Coupling Model................................................................... 24 

2.1 Motivation for the “Random Coupling Model”................................................ 25 

2.2 Formulating the “Random Coupling Model” ................................................... 30 

2.3 The “Radiation Impedance” normalization process ......................................... 33 

2.4 Extending the “Radiation Impedance” Normalization to Multi-Port Systems . 40 

2.5 Generating Normalized Impedance and Scattering matrices using Random 

Matrix Monte Carlo Simulations ............................................................................ 42 

Chapter 3: Experimental Setup and Data Analysis..................................................... 48 

3.1 Experimental Setup and Data Analysis- One Port............................................ 48 

3.2 Experimental Setup and Data Analysis- Two Ports.......................................... 53 



 

 vi 
 

Chapter 4: Universal Fluctuations in One-Port Impedance and Scattering Coefficients 

of Wave-Chaotic Systems........................................................................................... 62 

4.1 Experimental Results for One-Port Normalized Impedance z ........................ 62 

4.1.1 Effect of loss on cavity impedance and strength of the radiation impedance 

to quantify non-ideal port coupling..................................................................... 63 

4.1.2 Uncovering the Normalized Impedance ( z ) PDFs ................................... 67 

4.1.3 Universal Relation between the cavity loss-parameter α  and the Variance 

of ]Re[z  and ]Im[z ............................................................................................ 69 

4.1.4 Absorber Perimeter Ratio ( Ξ )................................................................... 79 

4.2 Experimental Results for Normalized Scattering Coefficient s ...................... 82 

4.2.1 Statistical Independence of || s  and sφ ..................................................... 82 

4.2.2 Detail-Independence of s .......................................................................... 84 

4.2.3 Variation of s  with loss............................................................................. 87 

4.2.4 Relation Between Cavity and Radiation Reflection Coefficients.............. 88 

4.2.5 Recovering Raw Cavity S  given radS  and α ........................................... 93 

4.4 Summary of Chapter 4 and Conclusions .......................................................... 98 

Chapter 5:  Universal Fluctuations in 2-port Impedance, Admittance and Scattering 

Matrices of Wave-Chaotic Systems............................................................................ 99 

5.1 Experimental Results for the PDFs of the zt and yt  eigenvalues.................... 101 

5.1.1 Marginal PDFs of the zt  and yt eigenvalues ............................................ 101 

5.1.2 Variation of α  with frequency for the different experimental loss-cases105 

5.2 Importance of The Off-Diagonal Radiation Elements in radZ
t

....................... 110 

5.3 Marginal and Joint PDFs of  st  eigenvalues................................................... 114 



 

 vii 
 

5.3.1 Statistical Independence of |ˆ| stλ  and 
stλ

φ ˆ ................................................ 114 

5.3.2 Joint PDF of st  eigenphases .................................................................... 117 

5.3.3 Joint PDF of eigenvalues of sstt †.............................................................. 121 

5.4 Summary of Chapter 5 and Conclusions ........................................................ 126 

Chapter 6:  Experimental Test of Universal Conductance Fluctuations By Means Of 

Wave-Chaotic Microwave Cavities .......................................................................... 128 

6.1 Relation between the dephasing parameter(γ ) and the cavity loss-

parameter(α )........................................................................................................ 133 

6.2 Uncovering the Universal Conductance Fluctuations PDFs........................... 135 

6.3 Validating Theoretical Predictions for the Mean and Variance of the UCF PDFs

............................................................................................................................... 139 

6.4 Summary of Chapter 6 and Conclusions ........................................................ 141 

Chapter 7: Characterization of Impedance and Scattering Matrix Fluctuations of 

Wave-Chaotic Systems ............................................................................................. 142 

7.1 Experimental Results for ZR  and SR ............................................................. 146 

7.2 Summary of Chapter 7 and Conclusions ........................................................ 149 

Chapter 8: Applications of the Random Coupling Model to Predicting HPM-Effects 

in 3-D, Real World Enclosures ................................................................................. 150 

8.1 Proving the Existence of Wave-Chaotic Scattering in a Computer-Box Cavity

............................................................................................................................... 152 

8.2 Characterization of the Measured Radiation-Case Scattering Matrix Elements

............................................................................................................................... 156 



 

 viii 
 

8.3 “Radiation Impedance” Normalization and the Applicability of Random Matrix 

Theory ................................................................................................................... 160 

8.3.1 Dyson’s Circular Ensemble for the Computer-Box Cavity ..................... 160 

8.3.2 Existence of Universal Impedance Fluctuations and applicability of         

Random Matrix Theory..................................................................................... 163 

8.3.3 Variation of α  with Frequency for the Computer-Box Cavity............... 165 

8.4 “RCM Induced Voltage Algorithm” for Prediction of Induced Voltage PDFs

............................................................................................................................... 167 

8.5 Predicting the Variance of Induced Voltages Using Hauser-Feshbach Relations

............................................................................................................................... 176 

8.6 Design Guidelines for HPM-Resistant Generic 3-D Complicated Enclosures182 

8.7 Summary of Chapter 8 and Conclusions ........................................................ 183 

Chapter 9: Final Conclusions and Scope for Future Work ....................................... 186 

9.1 Future Work .................................................................................................... 188 

9.1.1 Cryogenic and 3-D Wave-Chaotic Cavity Design................................... 188 

9.1.2 Homogeneous versus Inhomogeneous Cavity Losses ............................. 191 

9.1.3 Effects of Short-Ray Periodic Orbits in the Measured Radiation 

Case……........................................................................................................... 194 

9.1.4 Experimentally Exploring Broken-Time-Reversal-Symmetric Wave-

Chaotic Impedance, Admittance and Scattering Fluctuations .......................... 200 

9.1.5 Role of Scars ..................................................................................... 203 

9.1.6 Formulating a Time-Domain Version of the Random Coupling 

Model…… ........................................................................................................ 204 



 

 ix 
 

Appendix A- The “Terrapin RCM Solver v1.0” User’s Guide ................................ 205 

A.1 Introduction.................................................................................................... 206 

A.2 Installation: Windows XP .............................................................................. 206 

A.3 Navigating “Terrapin RCM Solver v1.0” ...................................................... 208 

A.4 Tutorial: Generating RMT z,s [Mode 1]........................................................ 211 

A.5 Tutorial: Normalize Measured Cavity Data [Mode 2]................................... 218 

A.6 Tutorial: Predict Induced Voltage PDFs [Mode 3]........................................ 223 

Appendix B: Summary of the different methods to estimate the cavity loss parameter 

- α.............................................................................................................................. 227 

Appendix C: Estimating the cavity Q from the measured cavity S11 data................ 233 

Appendix D: Derivation of the relation between the dephasing parameter (γ) and the 

cavity loss-parameter (α) .......................................................................................... 238 

Bibliography ............................................................................................................. 240 

 

 

 

 

   

 
 
 
 
 
 



 

 x 
 

List of Figures 

1.1 Schematic of “front door” and “back door” EMP coupling attack………………..3 

1.2 Illustration motivating the need for statistical electromagnetism…………………4 

1.3 Illustration of a mode-stirred chamber……….……………………………………8 

1.4 Trajectory of a point-particle in an integrable and chaotic system………………10 

1.5 Measured reflected power spectra for a chaotic and integrable microwave cavity 

……………………………………………………………………………………13 

1.6 Plot of the Wigner eigenlevel spacing distributions……………………………..15 

1.7 Schematic depicting the outline of the dissertation……………………………...20 

2.1 Mechanism and manifestation of non-ideal port coupling………………………28 

2.2 Schematic showing the “radiation impedance” normalization process………….29 

2.3 Plot of Random Matrix Theory predictions for PDF of ]Re[z and ]Im[z  as a 

function of the cavity loss-parameter α …………………………………………….38 

2.4 Histogram showing the distribution of GOE random matrix eigenvalues………45 

3.1 Experimental setup for the 1-port wave-chaotic cavity………………………….50 

3.2 Schematic showing the experimental setup for different cavity Loss-Cases…….52 

3.3 Experimental setup for the 2-port wave-chaotic cavity………………………….55 

3.4 Plot of the measured cavity spectral correlation function……………………….59 

4.1 Effect of increasing cavity loss on the measured cavity impedance…………….64 

4.2 Effects of configuration averaging on the measured cavity impedance…………65 

4.3 Uncovering universal impedance PDFs for 1-port wave-chaotic cavities………67 

4.4 Comparison of measured z  PDFs and predictions from Random Matrix 

Theory………………………………………………………………………………..69 



 

 xi 
 

4.5 Extracting the value of ]Re[ zα  from ]Re[z  PDFs using the PDF-fitting 

procedure……………………………………………………………………………..71 

4.6 Extracting the value of ]Im[zα  from ]Im[z  PDFs using the PDF-fitting 

procedure……………………………………………………………………………..73 

4.7 Comparing the experimentally obtained values for ]Re[ zα  and ]Im[zα ……………74 

4.8 Comparison of measured z  PDFs and predictions from Random Matrix Theory 

using the value of  α  obtained from the PDF-fitting procedure………….…………76 

4.9 Relationship between 2
]Re[ zσ , 2

]Im[zσ  and α ……………………………………...78 

4.10 Relationship between α  and the absorber perimeter ratio Ξ ………………….81 

4.11 Experimental verification of the Dyson’s Circular Ensemble for 1-port wave-

chaotic systems………………………………………………………………………84 

4.12 Detail-independence of s ………………………………………………………86 

4.13 Variation of s  with loss………………………………………………………...88 

4.14 Relation between the cavity and radiation reflection coefficient……………….92 

4.15 Polar plot of radiation scattering coefficient and configuration averaged cavity 

scattering coefficient…………………………………………………………………94 

4.16 Recovering raw cavity S , given radS  and α …………………………………..97 

5.1 Marginal PDFs of normalized impedance and admittance eigenvalues………..102 

5.2 Plot of variance of ]ˆRe[ ztλ , ]ˆIm[ ztλ , ]ˆRe[ ytλ , ]ˆIm[ ytλ  as a function of 

frequency……………………………………………………………………………105 

5.3 PDF-fitting procedure for 2-port normalized impedance PDF data……………107 

5.4 Variation of α  for different 2-port cavity Loss-Cases…………………………109 



 

 xii 
 

5.5 Importance of off-diagonal radiation matrix elements in the “radiation 

impedance” normalization process…………………………………………………112 

5.6 Experimental verification of the Dyson’s Circular Ensemble for 2-port wave-

chaotic systems……………………………………………………………………..115 

5.7 Joint PDF of st eigenphases…………………………………………………….119 

5.8 Joint PDF of  sstt † eigenvalues………………………………………………….124 

5.9 Relationship between 〉〈T  and the dephasing parameter γ ……………………125 

6.1 Schematic showing the “fictitious voltage probe” dephasing model…………..129 

6.2 Relationship between γ  and α ………………………………………………...134 

6.3 Experimentally uncovering universal conductance fluctuations PDFs………...136 

6.4 Universal scaling of the UCF PDFs…………………………………………….138 

6.5 Plot of mean and variance of G as a function of γ …………………………….140 

7.1 Plot of ZR  versus the cavity loss-parameter α ………………………………...143 

7.2 Plot of SR  versus the cavity loss-parameter α ………………………………...145 

7.3 Plot of experimental ZR ………………………………………………………...147 

7.4 Plot of experimental SR ………………………………………………………...148 

8.1 Illustration of 3-D computer-box cavity experimental setup…………………...153 

8.2 Plot showing the nature of Λ  as a function of frequency………………………155 

8.3 Illustration of the 3-D computer box-cavity radiation-case experimental setup..157 

8.4 Nature of the 3-D computer box-cavity radS
t

 matrix elements…………………159 

8.5 Experimental verification of the Dyson’s Circular Ensemble for the 3-D computer 

box-cavity…………………………………………………………………………..162 



 

 xiii 
 

8.6 Marginal PDF of ]ˆRe[ ztλ  for the 3-D computer box-cavity and comparison with 

predictions from Random Matrix Theory…………………………………………..164 

8.7 Plot of α  versus frequency for the 3-D computer box-cavity………………….166 

8.8 Flowchart for the “RCM Induced Voltage” algorithm…………………………170 

8.9 Tutorial for the “RCM Induced Voltage” algorithm……………………………172 

8.10 Histogram of the induced voltage PDFs in the computer-box cavity…………174 

8.11 Plot of ZR  as a function of frequency for the computer-box cavity…………..177 

8.12 Plot of SR  as a function of frequency for the computer-box cavity…………..179 

8.13 Plot of variance of induced voltages at port-2 as a function of frequency……181 

9.1 Illustration of cryogenic cavity experimental setup…………………………….189 

9.2 Effects of non-homogeneous distributed cavity loss…………………………...192 

9.3 Schematic of short-ray orbits in the chaotic cavity……………………………..195 

9.4 Nature of measured scattering coefficients for the partial-radiation cases……..196 

9.5 Plot of “corrected” and measured radiation scattering coefficient……………..197 

9.6 Effect of short-ray periodic orbits on the normalized data……………………..198 

9.7 Random Matrix Theory predictions for the PDF of  ]ˆRe[ ztλ  for GOE and GUE 

classes………………………………………………………………………………200 

9.8 Random Matrix Theory predictions for the PDF of  G  for GOE and GUE 

classes………………………………………………………………………………201 

9.9 Scarred eigenfunction of the chaotic cavity at 12.57GHz……………………...203 

A.1 The “Terrapin RCM Solver v1.0” CD label…………………………………...205 

A.2 Title-screen of the “Terrapin RCM Solver v1.0”………………………………208 

A.3 Navigating the “Terrapin RCM Solver v1.0” ..………………………………..210 



 

 xiv 
 

A.4 The use of the RESET button………………………………………………….211 

A.5 Screenshot of Mode 1………………………………………………………….212 

A.6 Screenshot of Mode 1-Simplified……………………………………………...213 

A.7 Screenshot of Mode 1-Advanced………………………………………………215 

A.8 Format of the output ASCII file generated by Mode 1………………………...217 

A.9 Screenshot of Mode 2    ...……………………………………………………..219 

A.10 Formatting of user-supplied cavity data files…………………………………221 

A.11 Screenshot of Mode 2 showing plots for the joint PDF of the universal 

impedance eigenvalues……………………………………………………………..222 

A.12 Screenshot of Mode 3 ..………………………………………………………224 

A.13 Screenshot of Mode 3 showing the PDF of induced voltages on port-2 for a 2-

Watt peak sinc-square excitation at Port-1…………………………………………226 

B.1 Procedure, advantages and disadvantages of estimating the cavity loss-parameter 

from first principles…………………………………………………………………227 

B.2 Procedure, advantages and disadvantages of estimating the cavity loss-parameter 

by comparing the PDFs of Re[z] and Im[z] obtained from measurements with 

corresponding PDFs numerically generated using α as a fitting parameter………..228 

B.3 Procedure, advantages and disadvantages of estimating the cavity loss-parameter 

from the relation between the variance of Re[z] and Im[z] PDFs, and  α obtained 

from Random Matrix Monte Carlo simulations…………………………………….229 

B.4 Procedure, advantages and disadvantages of estimating the cavity loss-parameter 

from the relation between the variance of Re[z] and Im[z] PDFs, and  α obtained 

from the Random Coupling Model…………………………………………………230 



 

 xv 
 

B.5 Procedure, advantages and disadvantages of estimating the cavity loss-parameter 

from the relation between the dephasing parameter (γ) and <T>…………………..231 

B.6 Procedure, advantages and disadvantages of estimating the cavity loss-parameter 

from the impedance-based Hauser-Feshbach relation……………………………...232 

C.1 Schematic showing the typical nature of the cavity resonances when measured 

from the transmitted power-vs-frequency curve or the reflected power-vs-frequency 

curve………………………………………………………………………………...234 

C.2 Estimating the cavity-Q from the a reflection measurement…………………...237 

 



 

 1 
 

Chapter 1: Introduction 

With the external environment becoming ever more polluted with 

electromagnetic radiation from numerous sources such as wireless data services, radar 

and the rising threat of electromagnetic weapons, there is an urgent need to study the 

effects of this radiation on key electronic and electrical systems, and the means by 

which to protect them. Interest in this field arose in the 1970s when scientists studied 

the nature of electromagnetic pulses (EMP) generated by the low-altitude detonation 

of a nuclear device [1]. A nuclear-EMP is a very intense but short (hundreds of nano-

seconds) electromagnetic field transient which has the potential to produce high 

electromagnetic power densities that can be lethal to electronic and electrical systems 

in its proximity.  The proliferation of High-Power Microwave (HPM) weapons 

such as Flux Compressed Generators (FCGs), High-Intensity Radiated Field (HIRF) 

guns and Electromagnetic Pulse Transformer (EMPT) bombs pose an even more 

serious threat [2]. These devices can produce narrow-band  or ultra-wide-band 

electromagnetic pulses on the order of tens to hundreds of microseconds with 

transient power-levels of up to tens of Terawatts [3]. Such high power densities can 

induce voltages on the order of Kilovolts on exposed electronic components thereby 

severely damaging military and civilian electrical or electronic systems at ranges of 

hundreds of meters.  

Civilian systems are particularly vulnerable to nuclear-EMP and HPM effects. 

High density metal-oxide semiconductor devices, which are ubiquitous in all these 

systems, are very sensitive to even moderate level voltage transients. Any voltage 

transient in excess of tens of volts can lead to a dielectric breakdown of the gate-
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oxide layer in these devices thereby giving rise to a large gate-drain current which 

effectively destroys the device [4]. This irreversible effect is known as “gate 

breakdown”. Such devices may still function, but their reliability is severely impaired. 

Electromagnetic Shielding [5] of such systems by enclosing it within a metallic 

casing can provide only limited protection. Unlike nuclear-EMP which has 

frequency-spectra in the Megahertz range, HPM weapons can produce narrow-band 

or ultra-wideband electromagnetic pulses with frequency-spectrums in the 500 MHz 

to 10 GHz range. On account of the short-wavelength, this HPM-EMP can induce 

large voltage transients on exposed wiring or cables that run in and out of these 

enclosures. These exposed components act as antennas, guiding the transient energy 

into the enclosure and inducing large voltage swings on the electronics within the 

enclosure. This makes the EMP generated by HPM weapons potentially more 

destructive as it can couple electromagnetic energy into a target system contained 

within an enclosure.  

Two principle modes of coupling have been recognized: 

(i) Front Door Coupling typically occurs when electromagnetic energy 

enters the system through dedicated antennas associated with radar 

or telecommunications equipment housed within the enclosure (Fig. 

1.1(a)). 

(ii) Back Door Coupling occurs when electromagnetic energy induces 

large voltage transients on exposed wiring or power cables which, 

in turn, guide the transient energy into the enclosure (Fig. 1.1(b)). 
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Fig. 1.1: (a) Schematic representation of a “Front Door” coupling attack for a super-

heterodyne radio receiver where the EMP is coupled into the system through 

dedicated antennas. (b) Schematic representation of a “Back Door” coupling attack in 

a desktop-computer where the EMP is coupled into the system through exposed 

wiring, power cables, cavity resonance modes, etc. 

 

Generally, nuclear-EMP (in the MHz range), couples well to wiring and 

cabling. HPM weapons that generate centimeter or millimeter wave-length radiation 

can produce a more elusive type of Back-Door Coupling attack. The small 

wavelength radiation can couple efficiently through small apertures, gaps between 
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panels and cooling vents which are commonly found on the metallic enclosures of 

most electronic systems. Under these conditions, the apertures on the enclosure act as 

slot-antennas allowing the electromagnetic energy to enter and directly excite 

resonances within the metallic enclosure which now acts like a microwave cavity. 

These resonances are high-order cavity-modes and have complicated standing wave 

patterns. Sensitive components situated near the anti-nodes of these modal patterns 

(commonly referred to as “hot spots”) are then exposed to high and potentially lethal 

electromagnetic fields. 

 

1.1 Need for Statistical Electromagnetism 
 

On account of the wave (short-wavelength) nature of this radiation, coupling 

properties of the enclosure depend in great detail on its size and shape, the structure 

of the apertures that act as ingress or egress routes for the electromagnetic energy, 

and the frequency of the radiation. Moreover, the nature of the modal patterns within 

the enclosure is extremely sensitive to small changes in frequency, shape of the 

enclosure and orientation of the internal components. This is shown in Fig. 1.2(a) for 

a computer-box where the different components-connectors, cables, PC board, etc.- 

all of which interact with the incoming electromagnetic energy and produce a highly 

dynamic electromagnetic environment within the computer-box, as indicated by the 

frequency-dependent trend of the induced voltage (black squares in Fig. 1.2(b)) on the 

IC-pin lead (port 2). Minute changes in the shape of the enclosure, such as 

contractions or expansions due to ambient thermal fluctuations or the reorientation of 

an internal component, can result in totally different internal field patterns. This is 
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shown in Fig. 1.2, where the bending of the an internal power-cable shown as the 

dotted red line in Fig. 1.2(a), results in a drastic change in the nature of the induced 

voltage at port 2 (shown as the red circles in Fig. 1.2(b)). Thus, intimate knowledge 

of the electromagnetic response of the enclosure for one configuration will provide no 

information in predicting that of another nearly identical configuration.  

 

Fig.1.2: (a) Schematic of a computer box showing the inherent complexity associated 

with determining the induced voltage on an IC lead (port 2) for external 

electromagnetic radiation penetrating from a cooling vent (port 1). The different 



 

 6 
 

components- connectors, cables, PC board, etc.- all interact with the incoming 

electromagnetic energy producing highly frequency-dependent voltage swings at port 

2. (b) Measured induced voltage data on port 2 for a real computer-box with a set-up 

similar to that in (a). Note the drastic change in the induced voltage values for two 

slightly different orientations of an internal component (shown schematically as the 

black and dashed-red line in (a)). 

 

Today, even with the availability of extremely fast and computationally 

powerful computers that utilize highly efficient 3-D electromagnetic-analysis 

algorithms, tackling a detailed problem as the one described above is still a challenge. 

Two major technical issues arise. Firstly is the problem of large “aspect-ratio”- which 

is defined as the ratio of the largest dimension to the smallest dimension in the 

problem. Most of these analysis-codes apply Maxwell’s equations after meshing the 

entire geometry of the problem. For low frequencies (about 100 MHz), these codes 

have proven to be reliable for calculating internal electromagnetic radiated fields for 

large scale systems such as the fuselage of an airplane [6]. However, for attempting to 

solve the fields generated within the fuselage at higher frequencies (in the Giga-Hertz 

range), the entire geometry of the fuselage would have to be meshed at scales much 

smaller than the wavelength. Due to the large aspect-ratio (ratio of the typical length 

of the fuselage to the wavelength) associated with this problem, an impractically large 

number of mesh-points would be required thereby making such an approach 

infeasible.  
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The second difficulty arises from the extreme sensitivity of the internal field 

structure to the frequency, shape of the enclosure and orientation of the internal 

components, as previously explained. Thus, even if it were possible to obtain a 

deterministic assessment of the internal fields for one possible configuration (say for 

an airplane fuselage with the bomb-bay doors open), it is of limited use for assessing 

a slightly different configuration (when the bomb-bay doors are closed). One would 

thus have to resort to averaging over a large ensemble of such configurations in order 

to derive any meaningful assessment of the internal field structure. This would be 

outrageously expensive both in terms of time and computational resources. All these 

reasons call out for a statistical description to the problem of electromagnetic 

coupling and scattering in large, complicated enclosures.  

Researchers in the field of “statistical electromagnetism” attempt to answer 

the fundamental question, “Given an electromagnetic environment and an electronic 

system, what is the probability that the system’s performance will be unacceptably 

degraded?” [7]. Researchers then construct stochastic models based on certain 

fundamental assumptions for the fields within such complicated enclosures. They 

then validate the analytic predictions derived from their models with real-world 

measurements on systems enclosed within controlled, complicated enclosures known 

as “mode-stirred chambers” (Fig.1.3).  
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Fig. 1.3: Mode-Stirred Chamber (MSC) at Southwest Research Institute, San Antonio 

Texas, used for electromagnetic compatibility studies of automobile electronics. [A] 

Metallic side-walls of the MSC to create an over-moded, high Q environment. [B] 

Mode-Stirrer with large metallic panels which is rotated to create a statistically 

homogenous field intensity within the MSC.[C] Horn Antenna used to excite the 

MSC. [D] Device under test- (an automobile). Courtesy: www.swri.org. 

 

Some of the main issues addressed so far in the field of statistical 

electromagnetism are: the probability distribution of fields at a point inside a highly 

over-moded mode-stirred chamber, the correlation function of fields at two points 

near each other, the statistics of the excitation of currents in cables and in small 

devices within the enclosure, and the quality factor (Q) of the chamber [7, 8, 9, 10, 

11, 12]. In all of these studies, the antennas (ports) that drive the enclosure are 

assumed to be “perfectly coupled” (or “ideally coupled”) to the enclosure. “Perfect 

coupling” refers to the situation in which an incoming wave on a driving port is 

BBAA

CC 
D
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entirely transmitted into the enclosure (with no prompt reflection at the interface of 

the port and the enclosure). Any reflection that is then measured on this port is on 

account of the transmitted wave entering the enclosure, bouncing around, and 

subsequently returning to the same port. In Chapter 2, a more precise definition for 

“perfect coupling” will be given. Perfect coupling, however, is practically impossible 

to achieve experimentally for arbitrary port geometries and over arbitrarily large 

frequency ranges. Thus, there is a need for a statistical model that incorporates the 

effects of non-ideal coupling. One such model, called the “Random Coupling Model,” 

will be elucidated in Chapter 2. The experimental validation of this model is the crux 

of my dissertation. 

1.2 Wave Chaos 

The coupling of high-frequency electromagnetic energy into complicated 

metallic enclosures falls within a larger class of similar problems previously 

encountered by physicists in the field of acoustics, mesoscopic transport and nuclear 

physics. All these systems comprise of short-wavelength waves (electromagnetic, 

acoustic or quantum mechanical) which are trapped within an irregularly-shaped 

enclosure or cavity, in the limit where the perimeter of the cavity is much larger than 

the wavelength. This limit is typically referred to “Ray Limit”. In this limit, on 

account of the small wavelength, the waves within the enclosure can be approximated 

as rays which undergo specular reflections (i.e., angle of incidence equals the angle of 

reflection) off the walls of the enclosure, much like the trajectory of a Newtonian 

point-particle elastically bouncing inside a similar-shaped enclosure. Hence, such 

systems are also referred to as “Billiards”.  
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It is thus intuitive that the dynamics of the rays within the enclosure depend 

on the shape of the enclosing boundaries. Typically, two types of ray-motion 

dynamics are possible, integrable or chaotic. A third type called “mixed dynamics” 

shows properties which are a combination of integrable and chaotic systems. Figure 

1.4 shows two common billiard shapes (black outlines in Fig. 1.4). The square in Fig. 

1.4(a) is known to be classically integrable - a point-particle elastically bouncing 

within the square will separately conserve the kinetic energies associated with its 

motion in the x  and y  direction. Figure 1.4 (b) shows a quarter-Sinai billiard, which 

is a symmetry-reduced version of a circle placed at the center of a square, and is 

known to be classically chaotic. 

 

 

 

Fig. 1.4: (a) Trajectory (shown in blue) of a point-particle elastically bouncing inside 

a two-dimensional square billiard cavity. (b) Trajectory (shown in red) of a point-

particle elastically bouncing inside a two-dimensional quarter-Sinai billiard cavity. 
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To observe a qualitative difference between the dynamics of these two 

systems, consider a particle initially placed at point P  within the two enclosures. The 

points are picked at random with uniform probability density per unit area. Let v  be 

the speed with which the particle is launched and θ  be the angular orientation of the 

velocity vector with respect to the horizontal. The angle θ  is chosen at random from 

a uniform distribution between 0  and π2 . 

As the Mathematica simulation in Fig. 1.4 shows, the evolution of the 

trajectories of the two particles over the same duration in time, look very different. 

For the chaotic cavity (Fig. 1.4(b)), the velocity vector of the particle seems to sample 

all values of θ  equally. It can be rigorously proved, that with probability one, the 

resulting chaotic trajectory will fill the cavity uniformly and isotropically. This is not 

the case for the square cavity in Fig. 1.4(a).  

Another fundamental difference is that if two particles are launched with 

slightly different initial conditions (same or slightly different initial location, or 

slightly different angular orientations of their velocity vectors) but with the same 

speed v , the subsequent evolutions of the trajectories in the integrable and chaotic 

case are different. In both cases the trajectories separate from each other, but the 

separation is, on average, linear in time for the integrable case and exponential in time 

for the chaotic case for short time-scales. However, due to the finite system size 

constraint of the cavity, the trajectories may eventually come arbitrarily close or 

intersect each other as time progresses. 

As suggested by Fig. 1.4, it is instructive to note that even very simple-shaped 

cavities can produce chaotic ray dynamics. This is of key significance for the problem 
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of short-wavelength electromagnetic coupling into enclosures. The inherent 

complexities associated with the boundary shape of the enclosure, say the inside of an 

airplane fuselage or the inside of a computer box, create a scenario which is highly 

conducive to the formation of chaotic dynamics for the rays within the enclosure. In 

fact, it does not take much to make a ray-chaotic enclosure. For instance, even a 

monopole antenna of diameter ( d ) radiating inside a perfectly cuboidal chamber 

(classically integrable system) will lead to ray-chaos if the wavelength of the 

radiation ( λ ) is of the order of the diameter of the antenna (i.e., d≈λ ) (see [13] for a 

2-D version of this example).  

The study of such wave-systems, in the ray-limit or short-wavelength limit, 

that exhibit chaotic ray dynamics is widely known as “Wave Chaos” or, equivalently, 

“Quantum Chaos,” when referring to quantum-mechanical wave systems such as 

atomic nuclei or mesoscopic condensed-matter systems. 

1.3 Universal Aspects of Wave-Chaotic Systems 

Figure 1.5 (a) shows a typical reflection spectrum for a wave-chaotic 

microwave cavity in the shape of a quarter bow-tie (inset). In Fig. 1.5(b), the typical 

reflection spectrum for an integrable microwave cavity in the shape of a rectangle 

(inset) is shown. Each minimum in the reflected microwave power corresponds to a 

resonator eigenfrequency. At first glance, the two spectra look totally haphazard and 

seemingly convey no relevant information about the two cavities. 
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Fig. 1.5: (a) Normalized reflected power spectra for a quarter bow-tie cavity. The 

shape of the wave-chaotic cavity is shown in inset. (b) Normalized reflected power 

spectra for a rectangular cavity. The shape of the integrable cavity is shown in inset. 

 

In the 1950s, Eugene Wigner [14] was confronted with a similar problem 

when studying the energy levels of large complicated nuclei. Just as in Fig. 1.5, the 

energy level density for a nucleus at high energies is rather dense. Wigner thus 

proposed a statistical formalism to extract information from these complicated 

looking spectra. He defined a normalized nearest neighbor eigenfrequency spacing 

(ε ) which was expressed as )/()( 222
1 nnn kkk Δ−= +ε , where nk  is the wavenumber 

corresponding to the thn eigenfrequency and 2
nkΔ  represents the mean-spacing 

between the eigenlevels (i.e., 〉−〈=Δ +
22

1
2

nnn kkk ). In the limit that the wavelength is 

small compared to the perimeter of the cavity and n  is large ( 1>>n ), the mean-

spacing 2
nkΔ , as given by the Weyl formula [15], depends upon the physical 

dimensions of the cavity. For a quasi-two-dimensional cavity such as the ones shown 

in Fig. 1.5, Akn /42 π≅Δ , where A  is the enclosed area of the cavity. For a three-



 

 14 
 

dimensional electromagnetic cavity, )/(2 22 kVkn π≅Δ , where V  is the enclosed 

volume of the cavity. There are higher-order corrections terms to 2
nkΔ  that depend 

upon the perimeter (2D) or surface area (3D) of the cavity [16], but their contribution 

can be neglected in the limit where the wavelength is much smaller than the typical 

size of the enclosure.  

Wigner discovered that the probability density function (PDF) of the 

normalized nearest neighbor eigenfrequency spacing (ε ) for different atomic nuclei 

followed certain universal curves depending only upon whether the quantum-

mechanical wave-dynamics within the nuclei was integrable or chaotic (Fig.1.6). i.e., 
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where TRS corresponds to systems with Time Reversal Symmetry and BTRS 

corresponds to systems with Broken Time Reversal Symmetry, and will be explained 

in the following section. 
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Fig. 1.6: Wigner distributions for the normalized eigenlevel spacing for three classes 

of systems (Integrable: black, TRS chaotic: red, BTRS chaotic: blue). The mean-

spacing is normalized to 1. Note that for integrable systems )(εP  peaks at 0=ε , 

implying a large number of degenerate energy states in such systems. For TRS-

chaotic systems, )(εP  is linear in ε  for small ε ; while for BTRS-chaotic systems, 

)(εP  is quadratic in ε  for small ε . In both TRS and BTRS cases, 0)( =εP  at 0=ε , 

implying the absence of degenerate energy states in such chaotic systems. 

 

In order to derive these results, Wigner formulated a novel statistical theory 

known as “Random Matrix Theory.” Later, in the 1980s, Bohigas [17] and 

MacDonald [18] conjectured that Random Matrix Theory should be applicable to 

generic wave-chaotic systems (electromagnetic, acoustic, mesoscopic, etc.) in 

addition to complicated nuclei. The distributions shown in Fig. 1.6 are known as 

“Wigner Distributions” and have now been validated with experimental results for 

electromagnetic systems (as in Fig. 1.5) [13], acoustic systems [19, 20] and quantum-



 

 16 
 

mechanical metal-cluster systems [21], thereby bolstering the conjecture that Random 

Matrix Theory is applicable to all generic wave-chaotic systems. 

1.4 Random Matrix Theory 

A truly remarkable aspect of wave-chaotic systems is that despite their 

apparent complexity, they all possess certain universal statistical properties (such as 

the normalized nearest neighbor eigenfrequency spacing distributions described in 

Section 1.3). This seems to suggest that the dynamics of the system are governed, in a 

qualitative way, by the symmetry of the system and not by the details of the 

interactions within the cavity. Depending upon the symmetry of the system, Wigner 

uncovered three types of wave-chaotic systems: (i) systems with Time Reversal 

Symmetry (TRS), (ii) systems with Broken Time Reversal Symmetry (BTRS) and, 

(iii) TRS systems with spin-1/2 interactions.  

In the case of electromagnetic wave-chaotic systems, only TRS and BTRS 

wave-chaotic systems are of interest. TRS systems comprise of electromagnetic-wave 

systems in which the medium within the cavity is characterized by real, symmetric 

permittivity and permeability tensors. Under these conditions the properties of an 

electromagnetic-ray, bouncing around inside the wave-chaotic cavity, are unaffected 

by the reversal of time (or equivalently, by reversing its direction of propagation). For 

such systems, the time-domain dynamical equations of the wave-system are invariant 

under tt −→ . BTRS systems, on the other hand, are those in which the medium 

within the cavity possesses asymmetric permittivity and permeability tensors with 

complex off-diagonal elements. Under these conditions, the presence of the off-

diagonal terms leads to a phase-difference (possibly also a different ray-trajectory) 
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between the time-forward and time-reversed paths for a bouncing ray that are not 

equal and opposite, and results in the time-domain dynamical wave-equation 

becoming complex. BTRS systems can be realized by the introduction of a 

magnetized ferrite [22]. 

Wigner hypothesized that the eigenvalue spectrum of these complicated wave-

chaotic systems would be statistically similar to the spectra of ensembles of random 

matrices. Denoting one such random matrix as H
t

, Wigner further hypothesized that 

two statistical conditions on the probability distribution of these random matrices 

( )(HP
t

) must be satisfied,  

(i) the elements of the random matrices ( ijH ) should be independent 

random variables, and  

(ii) for random matrices describing TRS systems, the probability 

distribution of the ensemble of random matrices ( )(HP
t

) should be 

invariant under orthogonal transformations, i.e, 

)()( ' TOHOPHP
tttt

= , where O
t

 is any orthogonal matrix  with 

1
ttt

=TOO  ( TO
t

 is the transpose of O
t

).  

For random matrices describing BTRS systems, H
t

 is a complex 

Hermitian matrix and the probability distribution of the ensemble of 

random matrices ( )(HP
t

) should be invariant under unitary 

transformations,    i.e,    =)( 'HP
t

P ( UHU
ttt †),   where U

t †  is any 

unitary matrix with UU
tt † 1

t
=   (U

t † 1−= U
t

).  
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 These two conditions imply that for TRS systems the distribution of the 

elements of the random matrix ( H
t

) are all independent-identically-distributed (i.i.d) 

real Gaussian random variables. The variance of the on-diagonal elements are equal 

and twice the variance of the off-diagonal elements. This specifies the Gaussian 

Orthogonal Ensemble (GOE) of random matrices for TRS wave-chaotic systems. For 

BTRS systems, each real on-diagonal element of the random matrix ( H
t

) is an i.i.d 

Gaussian random variable. The upper-diagonal elements are complex with real and 

imaginary parts being i.i.d Gaussian distributed each with a variance equal to that of 

the on-diagonal elements. The lower-diagonal elements are complex-conjugates of 

the corresponding upper-diagonal elements. This specifies the Gaussian Unitary 

Ensemble (GUE) of random matrices for BTRS wave-chaotic systems. There is a 

third Gaussian ensemble (Gaussian Symplectic Ensemble) which specifies TRS 

systems with spin-1/2 interactions, but it will not be discussed in this dissertation. 

 Using these Gaussian ensembles, several analytic predictions for the statistical 

properties of wave-chaotic systems have been derived [23, 24]. The “Random 

Coupling Model” of Chapter 2 is one such model that makes several statistical 

predictions for the scattering of short-wavelength waves inside wave-chaotic cavities 

based upon Random Matrix Theory and the assumption that it applies to real-world 

complicated electromagnetic enclosures. 

 

1.5 Outline of the Dissertation 

The objective of my research is to experimentally validate a statistical model 

called the “Random Coupling Model” (RCM), which will be introduced in Chapter 2. 
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This model makes use of certain aspects from Random Matrix Theory and the 

description of the eigenvalues and eigenfunctions of wave-chaotic systems to build up 

a statistical theory for the universal impedance, admittance and scattering fluctuations 

in wave-chaotic systems. The model has the potency to incorporate the non-ideal 

coupling between the ports and the cavity for arbitrary port geometries and over 

arbitrarily large frequency ranges. Most of my experiments will be performed on a 

quasi-two-dimensional quarter bow-tie shaped microwave cavity, which is known to 

be wave-chaotic and the experimental setup will be introduced in Chapter 3. The 

motivation to use a quasi-two-dimensional microwave cavity follows from the 

mathematical equivalence of the Helmholtz wave-equation for the electric field inside 

the quasi-two-dimensional microwave cavity, and the time-independent Schrödinger 

equation for the wave-function of a quantum-mechanical particle within a potential 

well, subject to the same boundary conditions. This equivalence broadens the 

applicability of my experimental results to include the scattering fluctuations in 

quantum-chaotic systems (atomic nuclei, quantum dots, quantum corrals, etc.) as 

well.  

My dissertation can be broadly divided into two parts. In the first part 

(comprising of Chapters 4, 5, 6 and 7), my objective is to validate the statistical 

predictions of the Random Coupling Model for a time-reversal symmetric, quasi-two-

dimensional wave-chaotic cavity driven by one or two ports (Fig. 1.7(a)). Here, I will 

show conclusively the efficacy of the model that allows one to take measurements on 

a driven wave-chaotic cavity, filter out the effects of non-ideal coupling between the 

driving ports and the cavity by means of a simple “radiation impedance” 
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normalization process (to be introduced in Chapter 2), and thereby uncover the 

universal fluctuating aspects of the impedance, admittance and scattering properties 

of these systems. These universal fluctuations will then be compared with theoretical 

predictions from Random Matrix Theory. 

 

 

Fig.1.7: Schematic depicting my dissertation outline. 

 

The second part of my dissertation mainly comprises of Chapter 8. Here, I 

will experimentally prove that real-world complicated enclosures such as computer-
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boxes do indeed exhibit chaotic scattering ray-dynamics. In doing so, I will also show 

the applicability of the Random Coupling Model to three-dimensional cavities and 

mode-stirred chambers. My objective in that chapter will be to use the Random 

Coupling Model to make explicit a priori predictions for the Probability Density 

Functions (PDF) of induced-voltages at specific target points within the computer box 

for arbitrary types of excitation at a source port (corresponding to different back-door 

coupling attack scenarios) (Fig. 1.7(b)). 

More specifically, my dissertation is outlined as follows: 

• Chapter 2: The “Random Coupling Model,” put forward by Zheng, 

Antonsen and Ott [25, 26], will be introduced and its salient features and 

predictions discussed. The Random Coupling Model introduces a novel 

“radiation impedance” normalization process. This allows one to separate 

the system-specific and detail dependent aspects of the scattering (brought 

about due to the non-ideal coupling between the port and the cavity) from 

the measured experimental data, and uncover the universal fluctuations in 

the impedance, admittance and scattering properties of wave-chaotic 

systems. 

• Chapter 3: The experimental setup for the quasi-two-dimensional quarter-

bow-tie shaped wave-chaotic microwave cavity drive by one or two ports 

is introduced, and the procedure of data-acquisition and analysis is 

explained. 

• Chapter 4: The practicality of the “radiation impedance” normalization 

process will be experimentally tested for different wave-chaotic cavities 
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driven by different port-coupling geometries. Experimental validation of 

the predictions of the “Random Coupling Model” for the universal 

impedance and scattering fluctuations in a quasi-two-dimensional, quarter-

bow-tie shaped wave-chaotic cavity driven by a single port will be 

discussed. 

• Chapter 5: Experimental validation of the predictions of the “Random 

Coupling Model” for the universal impedance, admittance and scattering 

fluctuations in the eigenvalues of a quasi-two-dimensional, quarter-bow-

tie shaped wave-chaotic cavity driven by two ports will be discussed. 

• Chapter 6: The Schrödinger-Helmholtz analogy is used to treat the 

quarter-bow-tie shaped wave-chaotic microwave cavity as a surrogate for 

ballistic quantum-dots and thereby explore the universal fluctuations in the 

conductance of these mesoscopic condensed-matter systems in the 

presence of quantum-decoherence. An empirical linear relationship will be 

derived that relates the ohmic loss-parameter within a microwave cavity to 

the degree of incoherent electron-transport through a ballistic quantum-

dot. 

• Chapter 7: Statistical aspects concerning certain key universal 

relationships, known as Hauser-Feshbach relations, between the elements 

of the impedance and scattering matrices of wave-chaotic systems will be 

experimentally studied.  

• Chapter 8: Experimental validation of the applicability of the “Random 

Coupling Model” for a real-world, three-dimensional complicated 
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enclosure (a computer box) will be discussed. Based upon the universal 

wave-chaotic scattering and impedance fluctuations derived from the 

Random Coupling Model, a prediction algorithm for the probability 

density function of induced-voltages within such enclosures for a given 

electromagnetic stimulus will be formulated and experimentally validated. 

A series of “bottom-line” lessons deduced from the Random Coupling 

Model which is applicable to the design of real-world systems (such as a 

computer box) which are more resistant to HPM attack is also discussed. 

• Chapter 9: A summary of the results discussed in this dissertation and a 

discussion of the possible future work is included. 
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Chapter 2: The Random Coupling Model 
 

The scattering of short-wavelength waves inside enclosures manifests itself in 

several fields of physics and engineering such as quantum dots [27], atomic nuclei 

[28], acoustic resonators [19, 20], electromagnetic compatibility [7], etc. Of particular 

interest is the case when the ray trajectories within the enclosure show chaotic ray-

dynamics. This interest has spawned the field of “wave chaos” (or “quantum chaos”), 

and has attracted much theoretical and experimental work [23, 24] to understand its 

nature. On account of the small wavelength of the scattered waves, as compared to 

the characteristic length-scale of the enclosure, the response of these systems exhibit 

extreme sensitivity to small changes in configuration, driving frequency, nature of 

driving ports, ambient conditions such as temperature, etc. Thus, an intimate 

knowledge of the response of any such system for a given well-defined stimulus or 

system configuration will not provide any foresight in predicting the response of a 

similar system when the stimulus or system configuration is slightly altered. This 

calls for a statistical approach to quantify the nature of such wave-chaotic systems.  

In this regard, Random Matrix Theory [23] has proved to be an integral tool in 

predicting universal statistical aspects of wave chaotic systems. It has been 

conjectured that in the short-wavelength regime, Random Matrix Theory can be used 

to model wave-chaotic systems [14, 17, 18]. In particular, the statistics of systems 

that show Time-Reversal Symmetry (TRS) are conjectured to be described by the 

Gaussian Orthogonal Ensemble (GOE) of random matrices, while the statistics of 

systems showing Broken Time-Reversal Symmetry (BTRS) are conjectured to be 

described by the  Gaussian Unitary Ensemble (GUE) of random matrices. There is 
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also a third random matrix ensemble corresponding to certain systems with spin-

interactions (Gaussian Symplectic Ensemble). Random Matrix Theory provides a 

potential framework for uncovering universal statistical properties of short-

wavelength wave-chaotic systems (e.g. Ericson fluctuations in nuclear scattering [13, 

29] and universal conductance fluctuations (UCF) in quantum-transport systems [30]- 

see Chapter 5 ). 

Since the applicability of Random Matrix Theory and the concomitant 

universal statistics is conjectural rather than rigorous, and since this conjectured 

applicability is said to be asymptotic in the limit of wavelength small compared to the 

system size, it is important to test the Random Matrix Theory conjecture against 

results obtained for specific real situations. 

 

2.1 Motivation for the “Random Coupling Model” 

Experimentally, however, validating the applicability of Random Matrix 

Theory has always proved challenging. One of the most common problems 

encountered by experimentalists is the presence of non-universal, system-specific 

artifacts introduced into the measured data by the experimental apparatus. These are 

generally referred to as the “direct processes”, as opposed to the “equilibrated 

processes” which describe the chaotic scattering within the system [31]. A typical 

example presents itself while measuring the statistical fluctuations in the scattering of 

microwaves through cavities with chaotic ray dynamics. These fluctuations are 

studied by exciting the cavity through coupled ports (coaxial transmission lines or 

waveguides) and observing the response (reflection and transmission) for a given 
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excitation. Generally, it is not possible to perfectly couple (ideally match) the ports to 

the cavity at all frequencies. Thus, there is generally a deviation from perfect 

coupling, which I refer to as “mismatch”. This mismatch, which is strongly 

determined by the geometry of the port, manifests itself as systematic fluctuations in 

the measured data. The result is that the measured data depends on the non-universal, 

direct processes of the ports, as well as the underlying universal, equilibrated 

processes of the chaotic scattering system.  

Figure 2.1 (a) is a schematic diagram of a waveguide coupled to a wave-

chaotic cavity and is used to demonstrate the mechanism of non-ideal port-coupling. 

The solid blue arrow represents a wave propagating along the waveguide and entering 

the cavity. On account of the impedance (potential) mismatch at the interface of the 

cavity and the coupled waveguide, a prompt reflection of the incoming wave is 

observed (indicated as the solid red arrow). This constitutes the “direct process” and 

is dependent upon the geometry of the waveguide, the frequency of the incoming 

wave and the structure of the cavity side-walls near the interface of the waveguide 

and the cavity. Thus only a fraction of the incident energy of the incoming-wave is 

transmitted into the cavity, wherein it experiences chaotic-scattering ray-dynamics 

(“equilibrated scattering process”) before returning to the waveguide. The measured 

response of the cavity as seen through the open-end of the waveguide is thus a 

complicated function of the direct-process as well as the equilibrated-process. 

In Fig. 2.1(b), the effects of non-ideal port coupling are shown on actual 

measured data for the wave-scattering in a wave-chaotic cavity coupled to a single 

port. The cavity is in the shape of a quasi-two-dimensional quarter-bow-tie (inset (ii)) 
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excited by a single port which is a section of a coaxial transmission line with the inner 

conductor (of diameter 2a) extending from the top-plate of the cavity and making 

contact with the bottom-plate (inset (i)). Two metallic perturbations shown as the 

gray rectangles in inset (ii) (roughly the size of the wavelength at 5GHz) are 

systematically scanned and rotated through one-hundred positions within the volume 

of the cavity. For each position of the perturbations, the cavity reflection coefficient 

( 2|| S ) is measured as a function of frequency from 6 to 11.85 GHz. The stars in Fig. 

2.1(b) represents the Probability Density Function (PDF) of the measured ensemble 

of the cavity reflection coefficient ( 2|| S ) for a driving port with  mma 27.12 = . The 

circles represents the PDF of the measured ensemble of the cavity reflection 

coefficient ( 2|| S ) for a driving port with  mma 635.02 = . Although the measurements 

are performed on the same wave-chaotic cavity, note the significant disparity in the 

two measured PDFs due to the difference in the port-coupling geometry. 
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Fig. 2.1: (a) The mechanism of non-ideal coupling between the driving port and 

wave-chaotic cavity. (b) Probability Density Function (PDF) of the measured 

ensemble of the cavity reflection coefficient ( 2|| S ) for a wave-chaotic cavity (inset 

(ii)) which is driven by a single port (inset (i)) with inner-conductor diameter of 

2a=1.27mm (stars) and 2a=0.635mm (circles). Note the difference in the measured 

PDFs for the same wave-chaotic cavity when only the inner-diameter (2a) of the 

driving port has been changed. 

 

Several approaches have been formulated to account for these direct processes 

[32, 33, 34] of which the “Poisson Kernel” approach introduced by Mello, Pereyra 

and Seligman is of special mention. Based on an information-theoretic model, the 

“Poisson Kernel” characterizes the direct processes between the ports and the cavity 

by the ensemble-averaged scattering matrix >><< S
t

. In order to apply this theory to 

a specific real situation, it is thus necessary to obtain a quantity that plays the role of 

the ensemble average >><< S
t

 appropriate to that specific system. For example, one 

scheme proposed for determining such a surrogate for >><< S
t

 for a specific system 
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used system configuration averaging. I denote this surrogate for >><< S
t

 as >< S
t

. 

Averaging over configurations, however, may suffer from excessive statistical error if 

the number of configurations averaged over is insufficiently large. Thus, to improve 

the estimate of the scattering coefficient statistics, Refs. [35, 36], which treat one port 

(scalar S ) scatterers, make use of an ergodic hypothesis [37, 38] to include an 

additional running average over frequency ranges that include many resonances, but 

are sufficiently small that the scattering coefficient statistics can be assumed to be 

nearly constant (i.e., a frequency range where the port coupling strengths are nearly 

constant). Using this approach, Refs.[35, 36] have investigated the universal 

fluctuations in the reflection coefficient of 1-port wave-chaotic microwave cavities. 

This was shown to produce favorable results for 1-port systems when compared with 

Random Matrix Theory predictions. We note, however, that the analysis is highly 

dependent on the accuracy of the experimentally-obtained >< S , which is prone to 

statistical errors. 

 The situation can become even more complicated when dealing with N  ports. 

In the recent 2-port paper by H. Schanze et.al. Ref. [39], the authors circumvent such 

problems by taking careful steps to ensure that the driving ports are nearly perfectly-

coupled to the cavity in the frequency range where the data is analyzed. In doing so, 

Ref. [39] achieves good agreement between the experimental results for the 

fluctuations in the transmission coefficient, and the Random Matrix Theory 

predictions for time-reversal-symmetric and for broken-time-reversal-symmetric 

cavities. Note, however, that Ref. [39] is for the case of perfectly coupled ports and 

that it is desirable to also deal with arbitrary port couplings. 
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2.2 Formulating the “Random Coupling Model” 

In Ref. [25, 26] a novel method to characterize the direct processes between 

the cavity and the driving ports was introduced. This method, which is motivated by 

electromagnetic-wave propagation inside complex enclosures, makes use of 

impedances to characterize the direct-processes rather than the ensemble-averaged 

scattering matrix as in Ref. [32]. For a N -port scattering system, the Scattering 

Matrix S
t

 models the scattering region of interest in terms of a NxN complex-valued 

matrix. Specifically, it expresses the amplitudes of the N  outgoing scattered waves 

(b~ ) in terms of the N  incoming waves ( a~ ) at the location of each port (i.e., 

aSb ~~ t
= ). The impedance matrix Z

t
, on the other hand, is a quantity which relates the 

complex voltages (V~ ) at the N  driving ports to the complex currents ( I~ ) in the N  

ports (i.e. IZV ~~ t
= ).  The matrices S

t
 and Z

t
 are related through the bilinear 

transformation, 2/112/1 )()( −− −+= oooo ZZZZZZS
ttttttt

where oZ
t

 is the NxN  real, 

diagonal matrix whose elements are the characteristic impedances of the waveguide 

(or transmission line) input channels at the N  driving ports. Like S
t

, Z
t

 is also a 

well-established physical quantity in quantum mechanics. Just as the elements of S
t

 

represent the transition probabilities from one state to the other in a quantum 

scattering system, Z
t

 is an electromagnetic analog to Wigner’s Reaction Matrix [40], 

which linearly relates the wave function to its normal derivative at the boundary 

separating the scattering region from the outside world.  
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 For a cavity driven by a single port, [25] has shown that the frequency-

dependent, complex-scalar cavity impedance ( Z ) can be written as an expansion over 

the M  modes of the cavity as, 

∑
= −−

Δ−=
M

n nul

nnR
n kQjk

wkRkjkZ
1

22

2
2

)/1(
)()(

π
 .                                   (2.1) 

Here, cfk /2π=  is the wavenumber for the incoming frequency f and 2
nkΔ  is the 

mean-spacing of the adjacent eigenvalues of the Helmholtz operator, 22 k+∇ . The 

quantity ulQ  represents the unloaded quality-factor of the cavity, and accounts for the 

losses within the cavity (dielectric losses, ohmic losses, etc.) excluding the dissipation 

through the port. The term, nw represents the coupling between the port and the thn  

eigenmode of the cavity, and is modeled as a Gaussian random number of zero mean 

and unit variance. This implicitly assumes two fundamental aspects of the wave-

scattering process within the cavity, 

(i) The cavity is over-moded  ( 1>>M ). This means that there are many 

modes with nk  in the narrow interval kδ  centered at k  (where 

222 )( kkkn <<<<Δ δ ), and if one of these modes is chosen at random, then 

its properties can be described by a statistical ensemble. 

(ii) The eigenfunctions of the cavity satisfy the “Random Plane Wave 

Hypothesis”. 

Both these assumptions are generally applicable for wave-chaotic systems, 

where the wavelength is much smaller than the typical size of the cavity. 

The “Random Plane Wave” hypothesis essentially states that the fields within 

a wave-chaotic cavity, in a statistical sense, behave like a random superposition of 
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isotropically propagating plane waves. The underlying basis for this hypothesis 

follows from the observation that ray trajectories in such chaotic systems, like the 

quarter-Sinai billiard of Fig. 1.4(b), are uniform in space and isotropic in direction. 

This has been well established numerically [18] as well as experimentally for quasi-

two-dimensional microwave resonators [41] and for 3-D mode-stirred chambers 

[10,11]. This same hypothesis has also been used for plasma waves [42] and for 

quantum-chaotic systems [43]. 

The term )( nR kR  incorporates the non-ideal coupling between the port and the 

cavity, and deserves special mention. If the cavity in Eq. (2.1) is driven by the same 

port (having the same coupling geometry) as before, but has the distant side-walls 

moved out to infinity (or coated with a material that perfectly absorbs the incident 

waves), then the port behaves as a free-space radiator. The boundary conditions 

corresponding to the outgoing waves, introduce a complex scalar impedance ( radZ ) 

known as the “radiation impedance” (or “terminal impedance”) at the plane of 

measurement for the driving-port. For this radiation-boundary condition, the cavity-

eigenvalues ( nk ) now form a continuum with the impedance of the driven cavity 

being written as, 

∫
∞

−
−

=
0

22

2

)()( nR
n

n
rad kR

kk
dkjkZ

π
.                                       (2.2) 

The evaluation of the contour-integral in Eq.(2.2) results in 

)](Re[)( kZkR radR = , which is known as the “radiation resistance” of the driving port 

and quantifies the energy dissipated in the far-field of the radiating port. The 

“radiation reactance,” which arises from the energy stored in the near-field of the 
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radiating port, is determined by a Kramers-Kronig relation [44] for )(kRR , and yields  

)](Im[)( kZkX radR = . The near-field structure of the port is determined by the 

geometry of the coupling port. The radiation impedance, radZ , is thus a non-statistical, 

smoothly-varying frequency-dependent quantity which accurately incorporates the 

detail-specific aspects of the coupling between the port and the cavity for any port 

geometry. 

The final step in building up a statistical model for the cavity impedance 

assumes the applicability of Random Matrix Theory to such wave-systems. Rather 

than determining the exact values corresponding to the eigenvalues ( 2
nk ) of the wave-

chaotic cavity, it can be described in a statistical sense with random numbers drawn 

from an appropriate Gaussian ensemble (GOE or GUE), depending upon the 

symmetry of the system (TRS or BTRS, respectively). This results in a robust 

framework, called the “Random Coupling Model” for the impedance and scattering 

properties of driven wave-chaotic cavities, wherein the system-specific aspects 

(“direct processes”) of the scattering are accurately quantified by the radiation 

impedance of the driving port and the universal aspects (“equilibrated processes”) are 

described in a statistical fashion by Random Matrix Theory.  

 

2.3 The “Radiation Impedance” normalization process 

Terms in the summation of Eq. (2.1) for which 2k  is close to 2
nk , either due to 

the choice of 2k  or the different realizations of the random numbers representing 2
nk , 

give rise to large fluctuations in the cavity impedance Z . The terms for which 2k  is 
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far from 2
nk  will contribute to the mean value of Z . Thus, the cavity impedance can 

be written as, 

flucZZZ +〉〈= ,                                        (2.3) 

where 〉〈Z  represents the mean value of the cavity impedance Z ; and flucZ  

represents the fluctuating parts of the cavity impedance Z . 

Reference [25] has shown that, for a cavity driven by a single port, the mean 

part of the cavity impedance( 〉〈Z ) is given by the radiation reactance of the driving 

port, and the fluctuating part( flucZ ) comprises of a universal fluctuating quantity 

(called z ) which is scaled by the radiation resistance of the driving ports. Thus, 

]Re[]Im[ radrad ZzZjZ +=  .                                  (2.4) 

The universal fluctuating quantity )(z , is theorized to be described by 

Random Matrix Theory, and describes the scalar cavity impedance of a cavity which 

is perfectly coupled to its driving port (i.e., 0ZZrad = , where 0Z  is the characteristic 

impedance of the transmission line connected to the port). The real part of z is well 

known in solid state physics as the local density of states (LDOS) and its statistics 

have been studied [45, 46]. The imaginary part of z  determines fluctuations in the 

cavity reactance. Equation (2.4) thus suggests a simple normalization process to 

uncover the universal fluctuations (Probability Density Functions of z ) in the 

measured cavity impedance of wave-chaotic cavities (as explained in Fig. 2.2). The 

quantity z  will henceforth also be referred to as the “normalized impedance.” 
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Fig. 2.2: Schematic representation of the “radiation impedance” normalization 

process for a cavity driven by a single port. The normalization process requires two 

measurement steps. (a) The first step referred to as the “Cavity Case” involves 

measuring the complex scalar impedance ( ]Im[]Re[ ZjZZ += ) of the cavity. For a 

low-loss chaotic-cavity, the quantity Z  wildly oscillates with frequency due to waves 

returning to the port after reflecting off the cavity side-walls. (b) The second step 

referred to as the “Radiation Case” involves measuring the complex scalar radiation-

impedance ( ]Im[]Re[ radradrad ZjZZ += ) of the driving port which retains its 

coupling geometry as in the Cavity case, but has the cavity side-walls moved out to 

infinity or coated with a perfectly absorbing material.  The radiation-impedance 

( radZ ) is a smoothly varying function of frequency and is devoid of any wild 

fluctuations as seen in Z . The normalized impedance ( z ) is then defined as 

]Re[/])Im[( radrad ZZjZz −= . 
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 According to the Random Coupling Model, the only parameter that 

determines the statistics of the normalized impedance z , is the dimensionless cavity 

loss-parameter called “α ”. For an electromagnetic cavity, )/( 22
uln Qkk Δ=α , where, 

cfk /2π=  is the wavenumber for the incoming frequency f and 2
nkΔ  is the mean-

spacing of the adjacent eigenvalues of the Helmholtz operator, 22 k+∇ , as predicted 

by the Weyl Formula [15] for the closed system. The use of the Weyl formula here is 

conventionally accepted for lack of a more complete treatment which is applicable to 

open systems or to systems with high absorption. The quantity ulQ  represents the 

unloaded quality-factor of the cavity and is defined as the ratio of the electromagnetic 

energy stored to the electromagnetic energy dissipated (due to ohmic and dielectric 

cavity losses) per cycle. The quantity ulQ  does not include dissipation through the 

coupled ports. The loss-parameter α  can range from 0 to ∞ , corresponding to a loss-

less cavity ( ∞=ulQ ) or an extremely lossy ( 0→ulQ ) cavity respectively. For the 

experimental results that follow in Chapters 4-8, it has been deduced that the 

dissipation through the ports amount to an α  value contribution on the order of 0.03 

to 0.12 [45], which is much less than the typical value of α  due to ohmic and 

dielectric losses from the interior of the cavity (α  ranging from about 1 to 300). Thus 

for all experimental results, I use the value of the loaded-quality factor (Q ) when 

determining the value of α , i.e., )/( 22 Qkk nΔ=α . The loaded-quality factor of the 

cavity (Q ) is defined as the ratio of the electromagnetic energy stored to the 

electromagnetic energy dissipated (due to ohmic and dielectric cavity losses as well 

as dissipation through the coupled ports) per cycle. The explicit expressions for α  
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taking into account the Weyl expressions for 2
nkΔ  (which are dependent upon the 

dimensions of the cavity- see chapter 1) yields, )4/(2 QAk πα =  for 2-D cavities and 

)2/( 23 QVk πα =  for 3-D cavities, where A  and V  represent the 2-D surface-area 

(not the full 3-D surface area including side-walls) and 3-D internal volume of the 2-

D and 3-D cavity, respectively. 

In the loss-less case, ∞=Q  with 0=α , and the cavity impedance Z  is thus a 

purely imaginary quantity. In this limit, [25] has shown that z  is also purely 

imaginary and Lorentzian distributed with zero mean and unit full width at half 

maximum. The Probability Density Function (PDF) of the real part of z  is a one-

sided delta function at 0]Re[ =z  which has a mean value of 1. As losses increases 

( 0>α ), z  develops a non-zero real part for which the PDF of ]Re[z  evolves from 

being peaked between 0]Re[ =z  and 1]Re[ =z , into a Gaussian-type distribution that 

peaks at 1]Re[ =z  for large α  (Fig. 2.3(a)). At the same time, the PDF of the 

imaginary part of the normalized impedance loses its long tails and begins to sharpen 

up, developing a Gaussian appearance (Fig. 2.3(b)). At all values of α , the mean 

value of the real part of z (i.e., 〉〈 ]Re[z ) is equal to 1, while the mean value of the 

imaginary part of z (i.e., 〉〈 ]Im[z ) is equal to 0. For values of 0>α , [25] predicts that 

the variance of the PDF of ]Re[z (i.e., 2
]Re[ zσ ) is approximately equal to the variance 

of the PDF of ]Im[z (i.e., 2
]Im[zσ ). The magnitude of these variances depend only upon 

the value of the cavity loss-parameter α  and the symmetry of the system, 

πα
σσ

2
12

]Im[
2

]Re[ ≅≈ zz       (BTRS)       for 1>>α ,                    (2.5) 
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πα
σσ 12

]Im[
2

]Re[ ≅≈ zz        (TRS)        for 1>>α .                    (2.6) 

 

 

Fig. 2.3: Random Matrix Theory predictions for the Probability Density Functions of 

(a) ]Re[z  and (b) ]Im[z  as a function of increasing α , for a time-reversal symmetric 

wave-chaotic cavity. 

 

 Once the normalized impedance z  has been obtained, it can be easily 

converted to the normalized admittance ( y ) or the normalized scattering coefficient 

( s ) through, 

zy /1=                                                         (2.7) 

)1/()1( +−= zzs .                                               (2.8) 

These universally-fluctuating, normalized quantities- z , y  and s  represent the 

electromagnetic scattering properties of a wave-chaotic cavity when the driving port 

is perfectly coupled to the cavity. Their PDFs are dependent only upon the value of 
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the cavity loss-parameter α , and are theorized to be described by Random Matrix 

Theory. 

 A similar stochastic electromagnetic-wave model for the complex scalar 

impedance fluctuations in a mode-stirred chamber as measured through a single 

antenna is presented by Warne et.al. from Sandia National Laboratories in Ref. 

[49(a)] (and later updated in Ref. [49(b)] to include the correlations between the 

eigenvalues of the complicated enclosure). Like the Random Coupling Model, the 

Sandia group also characterizes the non-ideal coupling between the enclosure and the 

driving antenna through the analytically determined “terminal impedance” (or free-

space radiation-impedance) of the antenna. In doing so, Warne et.al. derive an 

expression similar to Eq.(2.4) for the measured cavity impedance in terms of the 

terminal impedance of the antenna and a universal fluctuating cavity impedance, 

whose statistics depends only upon the value of the loss-parameter within the 

enclosure. The cavity loss-parameter in the Sandia Model, 
Q
Vk

Sandia π
α

2

3

= , differs from 

the Random Coupling Model 3-D cavity loss-parameter (
Q

Vk
2

3

2π
α = ) by a factor of 

π/1 . The Sandia model, which is formulated for a three-dimensional enclosure, 

introduces an impedance-normalization scheme similar to the one described in Fig. 

2.2 for uncovering the universal fluctuations in the cavity impedance. The Sandia 

group also has a similar expression as Eq. (2.6) for the variance of the real and 

imaginary parts of the universal fluctuating cavity impedance and does a good job of 

estimating the asymptotic tails of these distributions.  
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The Random Coupling Model incorporates all the predictions of the Sandia 

model, and goes further to include complicated enclosures excited by multiple ports 

(see section 2.4). This makes it possible to explicitly consider the distribution of 

voltages and currents on a target port due to a given excitation stimulus at a source 

port (see chapter 8), which is of key interest to the HPM and Electromagnetic 

Compatibility community. The extension to multiple ports as well as the effects of 

non-reciprocal media within the cavity, which is incorporated into the Random 

Coupling Model, leads to qualitatively new and different predictions which are not 

available to the Sandia model. Further, the Sandia model uses a single numerical 

value for the resistive and reactive parts of the terminal impedance of the antenna. 

This restricts their normalization scheme to narrow frequency ranges (5 or 10 MHz at 

200 to 900 MHz). The Random Coupling Model, on the other hand, makes use of the 

measured frequency-dependent radiation-impedance of the relevant ports. Thereby 

making it possible to gather normalized impedance data over an arbitrarily large 

frequency range (3 to 20 GHz- as will be shown in subsequent chapters). The 

Random Coupling Model also includes predictions for the fluctuations in the 

scattering and admittance matrices of quasi-two-dimensional and three-dimensional 

complicated enclosures, which is again not included in the Sandia model.  

2.4 Extending the “Radiation Impedance” Normalization to Multi-Port Systems 
 

In general, for a N -port system, the radiation impedance is now an NN ×   

complex-valued, symmetric matrix ( radZ
t

).  If the N  ports are very far apart, radZ
t

 is 

diagonal, but that is not assumed here. Reference [26] has shown that the measured 

NN ×  impedance matrix of a N -port, wave-chaotic cavity ( Z
t

) has a mean-part 
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given by the radiation impedance matrix ( radZ
t

) and a universal fluctuating part ( zt ), 

which is scaled by the radiation resistance matrix ( ]Re[ radZ
t

). Thus, 

.])(Re[])(Re[]Im[ 2/12/1
radradrad ZzZZjZ
ttttt

+=                                  (2.9) 

 From Eq. (2.9), zt can be easily extracted, 

.])])(Re[Im[(])(Re[ 2/12/1 −− −= radradrad ZZjZZz
ttttt                  (2.10) 

The normalized scattering matrix st  is ,  

,)1)(1( 1−+−=
ttttt zzs                                            (2.11) 

where 1
t

 is the NN ×  identity matrix. 

 The normalized scattering matrix st  can also be obtained from the cavity 

scattering matrix S
t

 and the radiation scattering matrix radS
t

 by converting these 

quantities to the cavity and radiation impedances, Z
t

and radZ
t

, respectively through  

                                     2/112/1 )1)(1( oo ZSSZZ
ttttttt

−−+=  and                       

2/112/1 )1)(1( oradradorad ZSSZZ
ttttttt

−−+= ,                                    (2.12) 

and by then using Eqs.(2.10) and (2.11). The matrix oZ
t

 is a real diagonal matrix 

whose elements are the characteristic impedances of the transmission lines connected 

to the driving ports. 

The normalized quantities zt  and st  represent the impedance and scattering 

matrix when the N  ports are perfectly coupled to the cavity, i.e., when orad ZZ
tt

= . 

Since, in general, radZ
t

 is a smoothly varying function of frequency and of the 

coupling-port structure, Eqs. (2.10) and (2.11) yield the perfectly-coupled  (ideally 
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matched) impedance and scattering matrix over any arbitrarily large range of 

frequency and for any port geometry.  

Reference [26] predicts that the marginal PDFs of the eigenvalues of zt  which 

are contained in the diagonal matrix zt
t
λ , and marginal PDFs of the eigenvalues of st  

which are contained in the diagonal matrix st
t
λ  are qualitatively similar to the PDFs of 

z  and s  in the 1-port case (see Fig. 2.3 ) and that they are dependent only on the 

loss-parameter (α ) of the cavity. 

 

2.5 Generating Normalized Impedance and Scattering matrices using Random Matrix 

Monte Carlo Simulations 

As mentioned previously, in the experimental results that follow in chapters 5 

through 8, my objective is to test the applicability of Random Matrix Theory to 

describe the universal statistical aspects of wave-chaotic scattering. It turns out that 

there exist several exact analytic predictions for the functional form of the PDFs of 

the universal impedance and scattering fluctuations as a function of the cavity loss-

parameter α  in the BTRS case [47, 48]. However, for the TRS case, the 

mathematical formalism is often too involved to obtain such succinct and exact, α -

dependent analytic predictions for the universal impedance and scattering fluctuation 

PDFs. Thus, in situations where no α -dependent analytic prediction exists, I compare 

my experimentally obtained normalized impedance and scattering matrix fluctuation 

PDFs for one or two port wave-chaotic cavities with corresponding numerical PDFs 

generated using random matrix Monte Carlo Simulations. This section presents the 

algorithms which I employ for numerically generating the TRS universal impedance 
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and scattering matrices as a function of α , from which the required universal 

fluctuation PDFs are derived. 

It has been identified previously that in a one-port lossy wave-chaotic cavity, 

the cavity impedance can be written in the form of Eq.(2.1). Based on Eq.(2.1), the 

assumption that QQul ≅  and, in the limit that the ports are perfectly coupled to the 

cavity at all frequencies, the normalized cavity impedance )(z  can be written as, 

∑
= −−

Δ
−

=
M

n n

n
n kQjk

wkjz
1

22

2
2

)/1(π
,                        (2.13) 

where the significance of each term in this expansion has been previously explained 

(see section 2.2 ). 

 By defining the cavity loss-parameter )/( 22 Qkk nΔ=α  as before, Eq.(2.13) 

can be written as, 

∑
= −

Δ
−

−
=

M

n

n

n

n

j
k

kk
wjz

1
2

22

2

απ
.                                (2.14) 

 Equation (2.14) is then evaluated numerically using MATLAB. In the 

MATLAB simulations, M is taken to be a large value on the order of 1000. Also M  

independent zero-mean and unit-variance Gaussian-distributed random numbers are 

generated for nw  using the random-number generator in MATLAB. Next, M  values 

of the normalized eigenvalues 22 / nn kk Δ  corresponding to the GOE ensemble need to 

be generated. Two approaches are possible for obtaining these quantities; (i) an 

approximate approach (which I call the “Wigner-Distribution Approach”) that makes 

use of the TRS normalized nearest neighbor eigenfrequency spacing distribution - Eq. 
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(1.1) and (ii) a full-fledged “Random Matrix Theory Approach” that makes use of the 

eigenvalues of an ensemble of large random matrices. The values of 2k  are picked to 

be the median-value of the obtained spectra of 2
nk . 

 For the method (i), M  independent values of the TRS normalized nearest 

neighbor eigenfrequency spacing (ε ) are generated using the TRS normalized nearest 

neighbor eigenfrequency spacing distribution in Eq. (1.1). The quantity 22 / nn kk Δ  is 

then defined as ∑
=

=Δ
n

i
inn kk

1

22 / ε . This approach is computationally fast and has been 

found to yield satisfactory outcomes for one-port wave-chaotic systems. It is 

noteworthy to point out that this approach has also been adopted by [49]. However, 

the approach is approximate in the sense that long-range correlations in the 

eigenspacings are neglected. I have found that these long-range correlations play a 

significant role particularly in the case of joint-distributions of the normalized 

impedance and scattering matrices eigenvalues, for two-port wave-chaotic systems 

(see chapter 5). Thus, to account for these long-range correlations, method (ii) is 

always adopted when pertaining to two-port systems. 

 For method (ii), in order to obtain the M  values of the normalized 

eigenvalues 22 / nn kk Δ  corresponding to the GOE ensemble, a MM × random matrix is 

first generated. The elements of the random matrix satisfy the criteria for GOE 

ensemble, i.e. the matrix is real symmetric with each element being an independent 

zero-mean, Gaussian-distributed random number. The on-diagonal elements are of 

unit-variance while the variance of the off-diagonal elements is 0.5. For large M , the 

eigenvalues of this MM ×  random matrix have non-uniform spacing and are 
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distributed as per “Wigner’s Semi-Circle law” [23], i.e, 

MMP MMM 2||;21)( 2 <−= λλ
π

λ , where Mλ  corresponds to one of the M  

eigenvalues of the MM ×  random Matrix. The distribution of the eigevalues of one 

such MM ×  random matrix (with 2000=M ) is shown in Fig. 2.4 (a). In order to 

generate a sequence of eigenvalues with approximately uniform spacing, Ref. [50] 

resorts to selecting the middle 5/M  levels and then normalizing the selected 

eigenvalues by multiplying with π/2M  to create a sequence of  22 / nn kk Δ  with 

average spacing of approximately unity. However, by following this procedure, the 

remaining 5/4M  eigenvalues and the computational effort required to obtain these 

quantities is unutilized. 

 

 

Fig.2.4: (a) Histogram (in blue) showing the distribution of the eigenvalues ( Mλ ) of a 

MM × sized random matrix of the GOE ensemble with 2000=M . The red curve is 

the “Wigner’s Semi-Circle Law” prediction for 2000=M . (b) Histogram (in blue) 

showing the distribution of the mapped-eigenvalues ( Mλ~ ) obtained from the 
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eigenvalues ( Mλ ) shown in (a) and Eq. (2.12). The red line represents a uniform 

distribution MP M /1)~( =λ  for 2000=M . 

 

An alternative procedure involves introducing a mapping function ),( MMλς  

which maps each Mλ  possessing the semi-circle distribution, into a new variable Mλ~  

which is uniform distributed between 2/M−  and 2/M  and having an average 

spacing of unity (Fig. 2.4(b)). The functional form of the mapping function ),( MMλς  

is, 

22
2

2
2)

2
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2
~ 2

1 M
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M
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M MMM
M −

⎟
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⎠

⎞

⎜
⎜

⎝

⎛ −
++= − λλλπ

π
λ .                  (2.15) 

 In this procedure, all of the M  eigenvalues ( Mλ ) are utilized thereby making the 

algorithm computationally more efficient. To my knowledge, the mapping function 

),( MMλς  does not alter the long-range correlation properties of the eigenvalues Mλ  . 

 Once the normalized impedance z  is obtained, it can be converted to the 

normalized one-port scattering coefficient s  using Eq. (2.11). By repeating this 

procedure about 100,000 times, a sufficiently large ensemble of  z  and  s  is 

generated from which the statistical descriptions of these quantities are determined. 

For random matrix Monte Carlo simulations pertaining to wave-chaotic 

systems driven by more than one port, a similar formalism for the NN ×  normalized 

impedance matrix ( NNz ×
t ) as in Eq. (2.14) is adopted, i.e., 

T
NN W

j
Wjz

t
tt

tt

1
1

αλπ −
−

=× ,                                      (2.16) 
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where N  is the number of driving ports. The matrix W
t

 is a MN ×  coupling-matrix 

with each element ijW  representing the coupling between the thi  driving port 

( Ni ≤<1 ) and the thj  eigenmode of the cavity ( Mj ≤≤1 ). Each ijW  is an 

independent Gaussian-distributed random number of zero mean and unit variance. 

The matrix TW
t

 corresponds to the transpose of matrix W
t

, and 1
t

 is a 

MM × identity-matrix. The matrix λ
t

 is a MM × diagonal matrix with a set of M  

Mλ~ -values generated as discussed previously. 

 The NN ×  normalized scattering matrix is then defined as 

1)1)(1( −
××××× +−= NNNNNNNNNN zzs

ttttt , where the 1−  indicates a matrix inversion 

operation. By repeating this procedure about 100,000 times, a sufficiently large 

ensemble of  zt  and  st  is generated from which the statistical descriptions of these 

quantities are determined. 
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Chapter 3: Experimental Setup and Data Analysis 
 

Until about 1990, apart from the nuclear spectra studies of [51], only a very 

small number of experiments on wave-chaotic scattering existed. The studies of 

irregularly shaped microwave cavities by Stockmann and Stein [52], Doron, 

Smilansky and Frenkel [53] have provided an impetus to wave-chaotic scattering 

research.  Microwave cavities with irregular shapes (having chaotic ray dynamics) 

have proven to be very fruitful for the study of wave-chaos, where not only the 

magnitude, but also the phase of scattering coefficients, can be directly measured 

from experiments. In this chapter, I present a detailed account of my experimental 

setup for a quasi-two-dimensional, quarter-bow-tie shaped wave-chaotic cavity which 

is driven by one-port (section 3.1) or two-ports (section 3.2). I also present the 

procedure for normalizing the measured cavity impedance and scattering data using 

the “radiation impedance” normalization process from Chapter 2. 

3.1 Experimental Setup and Data Analysis- One Port 

My experimental setup consists of an air-filled quarter bow-tie shaped chaotic 

cavity (Fig. 3.1(a)) which acts as a two dimensional resonator below about 19.05 GHz 

[54]. Ray trajectories in a closed cavity of this shape are known to be chaotic. This 

cavity has previously been used for the successful study of the eigenvalue spacing 

statistics [22] and eigenfunction statistics [41, 55] for a wave chaotic system. In order 

to investigate a scattering problem, the cavity is excited by means of a single coaxial 

probe whose exposed inner conductor, with a diameter ( a2 ) extends from the top 

plate and makes electrical contact with the bottom plate of the cavity (Fig. 3.1(b)). In 
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chapter 4, the scattering properties of the time-reversal symmetric cavity over a 

frequency range of 6 - 12 GHz are discussed, where the spacing between two adjacent 

resonances is on the order of 15 – 30 MHz over this frequency range.  

As in the numerical experiments in Refs.[25, 26] and Chapter 2, my 

experiment involves a two-step normalization procedure to account for the system-

specific details of non-ideal port coupling. The first step is to collect an ensemble of 

cavity scattering coefficients S  over the frequency range of interest. Ensemble 

averaging is realized by using two rectangular metallic perturbations with dimensions 

26.7 x 40.6 x 7.87 mm3 (about 1% of the cavity volume), which are systematically 

scanned and rotated throughout the volume of the cavity (Fig.3.1(a)). Each 

configuration of the perturbers within the cavity volume results in a different value 

for the measured value of S . This is equivalent to measurements on cavities having 

the same volume, loss and coupling geometry for the port, but with different shapes. 

The perturbers are kept far enough from the antenna so as not to alter its near-field 

characteristics. For each configuration, the scattering coefficient S is measured in 

8000 equally spaced steps over a frequency range of 6 to 12 GHz using a Hewlett 

Packard 8510C Vector Network Analyzer. In total, one hundred different 

configurations are measured, resulting in an ensemble of  800,000 S  values. I refer to 

this step as the “Cavity Case”.  
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Fig 3.1: (a) The physical dimensions of the quarter bow-tie chaotic microwave 

resonator are shown along with the position of the single coupling port. Two metallic 

perturbations are systematically scanned and rotated throughout the entire volume of 

the cavity to generate the cavity ensemble. (b) The details of the coupling port 

(antenna) and cavity height h are shown in cross section. (c) The implementation of 

the radiation case is shown, in which commercial microwave absorber is used to line 

the inner walls of the cavity to minimize reflections. 

 

The second step, referred to as the “Radiation Case”, involves obtaining the 

scattering coefficient for the excitation port when waves enter the cavity but do not 

return to the port. In the experiment, this condition is realized by removing the 

perturbers and lining the side-walls of the cavity with commercial microwave 
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absorber (ARC Tech DD10017D) which provides about 25dB of reflection loss 

between 6 and 12 GHz (Fig. 3.1.(c)). The finite reflection-loss presented by the 

microwave absorber results in systematic errors in the measured radiation-case 

scattering coefficient, which is discussed in section 9.1.3. Note that in the radiation-

case setup, the side-walls of the cavity are outside the near field zone of the antenna. 

Using the same frequency stepping of 8000 equally spaced points over 6 to 12 GHz, I 

measure the radiation scattering coefficient radS  for the cavity. Such an approach 

approximates the situation where the side-walls are moved out to infinity; therefore 

radS  does not depend on the chaotic ray trajectories of the cavity, and thus gives a 

characterization of the coupling independent of the chaotic system. Because the 

coupling properties of the antenna depend on the wavelength and thus vary over 

frequency, radS  is usually frequency dependent.  

Having measured the cavity S  and radS , I then transform these quantities into 

the corresponding cavity and radiation impedances ( Z and radZ ) respectively using, 

)1(
)1(

0 S
SZZ

−
+

=                                                        (3.1) 
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−
+

=                                                    (3.2) 

where 0Z  is the characteristic impedance of the transmission line feeding the antenna 

and is assumed to be Ω50  for the results that follow. 

 The normalized impedance z is then obtained by,  

]Re[
]Im[
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rad

Z
ZjZz −

=                                                      (3.3) 
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In order to obtain z , every value of the determined cavity impedance Z  is 

normalized by the corresponding value of radZ   at the same frequency. The 

transformation, 

1
1

+
−

=
z
zs                                                         (3.4) 

or equivalently, 
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=                                          (3.5) 

yields the normalized scattering coefficient s .   

 

 

Fig 3.2: Implementation of the different cavity “Loss Cases”. The gray lines indicate 

15.2 cm-long strips of microwave absorber placed along the inner walls of the cavity. 

The figure is not drawn to scale. 
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In order to test the validity of the theory for systems with varying loss, I create 

different “cavity cases” with different degrees of loss.  Loss is controlled and 

parameterized by placing 15.2 cm-long strips of microwave absorber along the inner 

walls of the cavity (see section 4.1.4). These strips cover the side walls from the 

bottom to top lids of the cavity. I thus generate five different loss scenarios (Loss 

Case 0, Loss Case 1, Loss Case 2, Loss Case 3 and Loss Case 4) shown schematically 

in Fig 3.2. The numbers 0, 1, 2, 3 and 4 correspond to the number of 15.2 cm -long 

strips placed along the inner cavity walls.. The total perimeter of the cavity is 147.3 

cm. I also create two different coupling geometries by using coaxial cables with two 

different inner diameters (2a=1.27mm and 2a=0.625mm, schematically shown in Fig. 

3.1(b)).  

Experimental results for the marginal probability density functions (PDFs) of 

normalized impedance z  and normalized scattering coefficient s , and its agreement 

with corresponding predictions from Random Matrix Theory is presented in chapter 

4. 

3.2 Experimental Setup and Data Analysis- Two Ports 

In this section, I present my experimental setup and data-analysis for an air-

filled, quasi-two-dimensional, quarter bow-tie shaped billiard cavity (Fig. 3.3 (a)) 

driven by two-ports. As in section 3.1, the cavity is 7.87 mm deep and behaves as a 

two-dimensional resonator when the driving frequency is less than 19.05 GHz. The 

curved walls ensure that the ray trajectories are chaotic and that there are only 

isolated classically periodic-orbits. 
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To set up the investigation, I introduce two driving ports (Fig. 3.3(b)) which 

are placed roughly 20 cm apart, and are labeled Port-1 and Port-2. The ports are 

located sufficiently far away from the side-walls of the cavity so that the near-field 

structure of each port is not altered by the walls. Both ports are sections of coaxial 

transmission lines, where the exposed center-conductor extends from the top plate of 

the cavity and makes contact with the bottom plate, injecting current into the bottom 

plate (Fig. 3.3(c)). The ports are non-identical; the diameter of the inner conductor is 

2a=1.27 mm for Port-1 and 2a=0.635 mm for Port-2.  

The measurements are made using an Agilent E8364B Vector Network 

Analyzer which is far superior to the HP8510C (used in section 3.1) in terms of 

frequency resolution, improved signal noise-floor and the ability to electronically 

calibrate the device rather than the conventional mechanical calibration used in the 

HP8510C. As in chapter 2 and section 3.1, the normalization of the measured data is a 

two-step procedure. The first step, what I refer to as the “Cavity Case” involves 

measuring a large ensemble of the full-2x2 scattering matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

SS
SS

Scav

t
.To 

realize this large ensemble, two metallic perturbers (shown as gray solids in Fig. 

3.3(a) ), each of typical dimensions 6.5 cm x 4 cm x 0.78 cm are used. The perturbers 

are roughly the order of a wavelength in size at 5 GHz. The edges of the perturbers 

are intentionally serrated to further randomize the wave scattering within the cavity 

by preventing the formation of standing waves between the straight wall segments of 

the cavity and the edges of the perturbations. The perturbers are systematically 

translated and rotated through one-hundred different locations within the volume of 

the cavity. Hence each orientation of the two perturbers results in a different internal 
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field structure within the cavity. Thus, in effect, I measure one-hundred cavity 

configurations all having the same volume, coupling geometry for the driving ports, 

and almost exactly the same cavity conduction loss. For each configuration of the 

perturbers, S
t

 is measured as a function of frequency from 3 to 18 GHz in 16000 

equally spaced steps. An ensemble of 1,600,000 cavity scattering matrices S
t

 is thus 

collected. Special care is taken not to bring the perturbers too close to the ports so as 

not to alter the near-field structure of the ports.  

 

 

Fig.3.3: (a) Top view of quarter-bow-tie microwave cavity used for the experimental 

“Cavity Case”. The two perturbations with serrated edges are shown as the gray 

shapes. The small, gray, uniformly-spaced rectangles lining the side-walls of the 

cavity represent 2cm-long strips of microwave absorber which are used to control the 
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loss in the cavity.(Loss Case 0 : 0 strips, Loss Case 1: 16 strips, Loss Case 2: 32 

strips).  (b) The implementation of the experimental “Radiation Case” is shown. The 

gray lining on the side-walls is a homogenous layer of microwave absorber (about 2 

mm thick). The physical dimensions of the cavity are shown in the schematic. The 

approximate locations of the two driving-ports are also shown.  (c) Cross-section 

view of both driving-ports inside the cavity. The cavity is 7.87 mm in depth. The 

diameter of the inner conductor is a2  (=1.27 mm for Port 1; =0.635 mm for Port 2). 

 

The dominant loss mechanism in the empty cavity is ohmic loss in the broad 

top and bottom plates of the cavity. The fluctuations in loss from mode-to-mode are 

small and come from differences in field configurations around the side walls [56]. 

The degree of loss can be increased in a controlled manner by partially lining the 

inner side-walls with 2 cm-long strips of microwave absorber (Fig. 3.3(a)) having 

uniform spacing. I believe this creates a more homogenously distributed loss-profile 

as compared to the lossy cavity cases of section 3.1 (see section 9.1.2). Three lossy 

Cavity Cases are measured at room temperature– labeled “Loss Case 0” : with no 

absorbing strips, “Loss Case 1” : with 16 absorbing strips and “Loss Case 2” : with 32 

absorbing strips. A fourth experimental Loss Case is created by placing the Loss Case 

0 cavity in a bath of dry-ice (solid CO2 at -78.5oC). This has the effect of slightly 

increasing the overall Loss Case 0 cavity Q value by about 10% (taking into account 

the small decrease in the cavity volume and changes in the cavity mode-spacing due 

to thermal contraction of the cavity). I refer to this case as the “dry-ice case”. Along 
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with frequency, these four loss cases lead to an experimental control over the value of 

α  from 0.9 to 25. 

  To make a quantitative assessment of the degree of “non-ideal coupling” or 

“mismatch” of the two ports with the cavity, I compute the transmission coefficient 

coupT  of the ports [36] as a function of frequency from 3 to 18 GHz. I define 

2|ˆ|1
><

−=
ScoupT λ , where 

><S
tλ̂ are the two complex scalar eigenvalues of >< S

t
. 

Here, >< S
t

 is the configuration average over the measured ensemble of S
t

 at each 

frequency. )0(1=coupT represents the case when the ports are perfectly matched 

(mismatched) to the cavity. The inset in Fig. 3.4 shows the PDF of the measured  

coupT  (i.e. )( coupTP ) for a Loss Case 0 cavity from 3 to 18 GHz. The PDF is fairly 

widely spread over the range 0 to 1 with a mean value of about 0.7, and with a 

standard deviation of about 0.3. An analysis of the coupling and loss for the scattering 

matrix in similar microwave cavities is presented in Ref. [56]. 

The degree to which the two perturbations produce a change in the internal 

field structure of the cavity can be qualitatively inferred by looking at the frequency 

correlations in the measured S
t

 data. In Fig. 3.4 for Loss-Case 0, the frequency 

correlation function 
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with GHzfo 3=  is shown as the red circles. The averaging 〉〈...  is done over the one 

hundred different configurations of the perturbations inside the cavity, and )|(| 11 fSσ  

represents the standard deviation of the one-hundred different measurements for 

cavity |)(| 11 fS  at frequency f . The frequency GHzfo 3=  represents the lowest of 
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the frequencies that is experimentally tested; and therefore the worst-case scenario for 

performing the approximation to true ensemble averaging. Based on the area and 

perimeter of the cavity, the Weyl formula [15] yields a typical mean-spacing of 

MHzfWeyl 42≅Δ  between the eigenmodes of the cavity around of . From Fig. 3.4, it is 

observed that the experimentally determined correlations in frequency die off within 

one mean-spacing WeylfΔ . However, the correlation function in Fig. 3.4 is similar to 

those obtained under local, rather than global, perturbations of the system [57]. It has 

previously been identified that the short ray orbits inside the cavity will produce 

systematic deviations of the finite configuration averaging from a true ensemble 

average [25]. I therefore invoke ergodicity and also employ frequency averaging of 

the data. Since the frequency averaging ranges that I use are very much larger than 

WeylfΔ  (typically by a factor of about 20), this confirms that the frequency (in addition 

to perturber configuration averaging) is an effective means of approximating a true 

ensemble average. 
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Fig.3.4: Spectral correlation function 
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=   of the measured cavity 

reflection coefficient. Each red-circle symbol represents the correlation between the 

one hundred different renditions of the Loss-Case 0 cavity |S11| at frequency 

GHzfo 3= with the one-hundred different renditions of the same cavity |S11| at 

frequency ffo δ+ .  The mean mode-spacing is determined to be MHzfWeyl 42≈Δ . 

Inset: The PDF of the raw-data transmission coefficient of the two ports ( )( coupTP ) is 

shown for Loss-Case 0 cavity from 3 to 18 GHz. Note the broad range of coupling 

values present in the un-normalized data. 
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The second step of the normalization procedure is what I refer to as the 

“Radiation Case” (Fig. 3.3(b)). In this step, the side-walls of the cavity are completely 

lined with microwave absorber (ARC-Tech DD 10017- about 2mm thick) which 

gives about 20-25 dB reflection loss between 3 and 18 GHz for normal incidence. 

The perturbers are removed so as not to produce any reflections back to the ports. 

Port-1 and Port-2 are left untouched- so that they retain the same coupling geometry 

as in the “Cavity Case”. The radiation measurement now involves measuring the 

resultant 2x2-scattering matrix, which I label ⎥
⎦

⎤
⎢
⎣

⎡
=

radrad

radrad
rad SS

SS
S

2221

1211t
, from 3 to 18 

GHz with the same 16000 frequency steps as in the “Cavity Case”. The microwave 

absorber serves to severely suppress any reflections from the side-walls. This 

effectively simulates the situation of the side-walls of the cavity being moved out to 

infinity (radiation-boundary condition). The off-diagonal terms in radS
t

 correspond to 

direct-path processes between the two ports. The contribution of these terms has been 

taken into account in the analysis and results that are presented in section 5.1 and 

section 5.3. The hazards associated with ignoring these terms in the normalization 

process deserves special mention and are discussed in section 5.2. 

 Having measured the ensemble of cavity S
t

 and the corresponding radiation 

radS
t

, I convert these quantities into the corresponding cavity impedance Z
t

 and 

radiation impedance radZ
t

 matrices respectively using Eq. (2.12), where each port has 

a single operating mode with characteristic impedance of Ω50  over the frequency 

range of the experiment. 
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Every measured Z
t

 is then normalized with the corresponding measured radZ
t

 

at the same frequency using Eq. (2.10). Having obtained the normalized impedance 

matrix zt , it is then converted to the normalized scattering matrix st  using Eq. (2.11); 

and the normalized admittance matrix yt ( 1−= zy tt ).  These normalized quantities 

represent the corresponding electromagnetic response of the chaotic-cavity in the 

limit of perfect coupling between the driving ports and the cavity over the entire 

frequency range of the experiment from 3 to 18 GHz. Experimental results for the 

joint and marginal probability density functions of zt , yt  and st , and its agreement 

with corresponding predictions from Random Matrix Theory is presented in chapter 

5. 
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Chapter 4: Universal Fluctuations in One-Port Impedance and 

Scattering Coefficients of Wave-Chaotic Systems 

In this chapter, I present my experimental results for the universal fluctuations 

in the normalized impedance z  and normalized scattering coefficient s  for the quasi-

two-dimensional, quarter-bow-tie shaped wave-chaotic cavity introduced in section 

3.1. My experimental results, in this chapter, are presented in two sections.  In section 

4.1, I show my experimental results for the Probability Density Functions (PDFs) of 

the normalized impedance z . I first experimentally validate that the radiation 

impedance radZ  accurately quantifies the non-ideal coupling between the port and the 

cavity. I then compare the experimentally obtained histogram approximations to the 

PDFs of z  with predictions from Random Matrix Theory. In section 4.2, I convert 

the normalized impedance z  to the normalized scattering coefficient s  and 

experimentally validate statistical predictions for the magnitude and phase of the 

normalized s  from Random Matrix Theory. Section 4.3 concludes this chapter with a 

summary of my experimental findings and its implications. 

 

4.1 Experimental Results for One-Port Normalized Impedance z  

This section is broadly divided into four parts. In the first part, I examine the 

effects of increasing loss on the raw cavity impedance Z . I show the advantage of 

using the radiation impedance, which is a non-statistical quantity, rather than the 

ensemble averaged cavity impedance >< Z  to quantify the non-ideal coupling 
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between the port and the cavity. In the second part of this section, I show the 

insensitivity of the “radiation–impedance” normalization process to system-specific 

details and uncover the universal fluctuations in the cavity impedance. I then show 

the agreement between the experimentally determined histogram approximations to 

the PDFs of the normalized impedance z  and those numerically generated using 

Random Matrix Theory. In the third part, a prediction for the variances of the real and 

imaginary parts of these normalized impedance PDFs and their dependence on the 

cavity loss-parameter (α ) is experimentally tested. Finally, in the fourth part, I 

experimentally derive an empirical relation between the cavity loss-parameter (α ) 

and the number of microwave absorbing strips within the cavity, thereby showing my 

ability to control the value of α  in the cavity. 

 

4.1.1 Effect of loss on cavity impedance and strength of the radiation impedance to 

quantify non-ideal port coupling 

Figure 4.1 demonstrates how the cavity impedance evolves with increasing 

loss [58].  Shown are impedance magnitude data versus frequency for Loss-Case 0 

(black squares), Loss-Case 1 (blue circles) and Loss-Case 4 (green triangles) cavities 

excited by an antenna with inner diameter mma 27.12 = . These data sets are for a 

single rendition of the cavity in the frequency range of 6-7.2 GHz.   Also shown is the 

measured radiation impedance magnitude (red line in Fig. 4.1) for the same antenna 

as in the Loss-Case cavities with mma 27.12 = .  As losses increase, it can be 

observed that the fluctuations in |Z| clearly decrease, and approach the radiation case. 
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Fig. 4.1: The magnitude of a single rendition of the cavity impedance (Loss Case 0-

black squares, Loss Case 1-blue circles, Loss Case 4-green triangles) is shown as a 

function of frequency. The solid red line is the magnitude of the measured radiation 

impedance for the same antenna and coupling detail as shown in the Loss-Case 

cavities . As losses within the cavity increase, the cavity resonances are dampened out 

and the measured cavity impedance approaches the radiation impedance. 
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Fig. 4.2: The magnitude of the Loss-Case 0 cavity impedance is shown as a function 

of frequency. The black squares indicate a single rendition of the cavity impedance 

and perturbations. The blue line is the magnitude of the complex cavity impedance 

obtained after configuration averaging over 100 different perturbation positions 

within the cavity. The solid red line is the magnitude of the measured radiation 

impedance for the same antenna and coupling detail as shown in Fig. (3.1 (b)) and 

with mma 27.12 = . Note that even after 100 renditions of the perturbers within the 

cavity, || 100〉〈Z is still a poor approximation to || radZ . 

 

In Fig. 4.2, I examine the degree to which configuration averaging to estimate 

〉〉〈〈S  and 〉〉〈〈Z , as employed in the Poisson Kernel, can reproduce the radiation 
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cases radS  and radZ .  Figure 4.2 shows typical data for the magnitude of the cavity 

impedance versus frequency for several cases.  The black squares show the cavity 

impedance for one particular rendition of the Loss Case 0 cavity and its perturbers.  

The blue line shows the result of averaging the complex impedance of 100 renditions 

of the Loss Case 0 cavity.  The solid red line is the measured radiation impedance 

radZ , which should be equivalent to the ensemble average of the cavity impedance 

〉〉〈〈Z .  It is clear that even after configuration averaging the properties of 100 

cavities, the value of 100〉〈Z  has not yet approached the radiation case.  This 

demonstrates the importance of obtaining very high quality statistics before the 

Poisson Kernel can be used on real data.  It also illustrates the relative ease with 

which the radiation impedance can be used to characterize the non-ideal coupling of 

real wave-chaotic systems [58]. 
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4.1.2 Uncovering the Normalized Impedance ( z ) PDFs 

 

 

Fig.4.3: (a) shows the PDFs of the imaginary part of cavity impedance ( ]Im[Z ) for 

two different antenna diameters, 2a=0.635mm (circles) and 2a=1.27mm (stars), from 

9 GHz to 9.6 GHz. (b) The two curves in (a) scale together after using the 

prescription of [25] for the imaginary normalized cavity impedance ( ]Im[z ). 

 

Here, I test the degree of insensitivity of the universal properties of the 

normalized impedance PDFs to system-specific details and non-universal quantities 

[45].  Working in the 9 to 9.6 GHz range, I take two identical cavities and change 

only the diameter of the coupling wire in the antenna from 2a = 1.27 mm to 0.635 

mm. As seen in Fig. 4.3(a), this difference causes a dramatic change in the raw 

]Im[Z  PDF. However, this difference essentially disappears in the PDFs for the 

appropriately scaled impedance z  as shown in Fig. 4.3(b).  

Figure 4.4 shows the evolution of the PDFs for the normalized cavity 

impedance in the frequency range of 7.2-8.4 GHz for increasing loss [45].  The red 
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error bars which are roughly the size of the symbols in Fig. 4.4 are representative of 

the typical statistical binning error in the experimental PDFs. The data shows that as 

the losses within the cavity increase, the PDF of the normalized imaginary part of the 

impedance loses its long tails and begins to sharpen up, developing a Gaussian 

appearance.  The normalized PDF of the real part smoothly evolves from being 

peaked below 1, into a Gaussian-like distribution that peaks at 1 and sharpens with 

increasing loss (also see Fig.2.3).  The data-sets represented by the stars, triangles and 

hexagons in Fig. 4.4 correspond to α  values of about 0.8, 4.2 and 7.6 respectively. 

These values of α  (= )4/(2 QAk π ) were determined from first principles by 

specifying the values of the wave-number 163≈k 1−m  corresponding to the center 

frequency of 7.8 GHz, enclosed physical-area of the cavity 115.0≈A 2m  and typical 

loaded Q  of the cavity within this frequency range. The typical loaded Q  values for 

the cavity of about 300 , 60 and 35, for the data-sets represented by the stars, triangles 

and hexagons respectively, were extracted from )(11 ωS  measurements for these 

different loss scenarios (see Appendix [C]). The experimentally obtained PDFs are 

overlaid with numerically generated PDFs from random matrix Monte Carlo 

simulations, shown in blue, for the real and imaginary parts of the normalized 

impedance (see section 2.5) for the same choice of α = 0.8, 4.2 and 7.6.  There is a 

close overlap between the numerical results and the experimental results in all cases 

indicating that Random Matrix Theory satisfactorily describes both the real and 

imaginary parts of the  normalized impedance PDFs for the same value of α . 
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Fig.4.4:  PDFs for the (a) real and (b) imaginary parts of the normalized cavity 

impedance z  for a wave chaotic microwave cavity between 7.2 and 8.4 GHz with h = 

7.87 mm and 2a = 1.27 mm, for three values of loss in the cavity (open stars: Loss-

Case 0, triangles: Loss-Case 2, hexagons: Loss-Case 4).  The red error bars which are 

roughly the size of the symbols indicate the typical statistical binning error in the 

experimentally obtained PDFs. Also shown in blue are single parameter numerical 

predictions from Random Matrix Theory for the choice of α  corresponding to the 

data-sets represented by the stars, triangles and hexagons. 

 
 

4.1.3 Universal Relation between the cavity loss-parameter α  and the Variance of 

]Re[z  and ]Im[z  

Having established that the “radiation-impedance” normalization procedure is 

valid and the universal fluctuations in the normalized impedance are well represented 

by Random Matrix Theory, I proceed to test another prediction of [25] which pertains 

to the relation between the variance of the real and imaginary parts of the TRS 

normalized impedance PDFs and the loss-parameter α  (Eq.(2.6)). 
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My first step is to determine the value of α  for my experimental Loss-Cases. 

I employ a sliding window of width 1 GHz wide (over which I assume that the value 

of α  does not change significantly) that steps every 500 MHz over the frequency 

range of 6-12 GHz for my measured Loss-Case data. I define each 1 GHz window as 

a “data-set”. Since it is a tedious process to determine the value of the cavity Q  for 

each of these data-sets from the )(11 ωS   measurements, I resort to an alternate method 

which involves fitting the experimentally determined normalized impedance PDFs to 

those generated numerically from Random Matrix Theory. 

I numerically generate PDFs of the real and imaginary parts of the normalized 

impedance using random-matrix Monte-Carlo (MC) simulations with square matrices 

of size 400=N , and the value of )( MCαα =  in the simulations ranging from 0.1 to 

15 in steps of  0.1 (see section 2.5). I then define a “PDF-error” function 

∑ −−=Δ
θ

θ θαθ |),(),(| exp fPPe MCMC , which quantifies the error between the PDFs of 

the normalized impedance generated numerically from Monte-Carlo simulations 

(MC) and those determined experimentally (exp). Here, θ  corresponds to either the 

real ])(Re[z  or imaginary ])(Im[z  parts of the normalized impedance PDFs ( )(θP ). 

Instances where there is good agreement between the normalized z  PDFs obtained 

experimentally and the corresponding PDFs generated through random matrix Monte 

Carlo simulations for a given choice of MCα , result in small magnitudes for the PDF-

error function. 
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Fig.4.5: (a) Contour plot for the Loss-Case 0 PDF-error function ]Re[ zeΔ with the 

color-scale indicating the magnitude of the PDF-error function (blue=large error, 

red=small error). The red region indicates choices of MCα  in the numerical 

simulations for which there is good agreement (small error) between the 

experimentally obtained PDF for ]Re[z  and the corresponding PDF generated from 

random matrix Monte Carlo simulations. The black, red and green horizontal bands 

indicate 1GHz wide cavity data-sets for which the value of α  is to be determined in 

(b). (b) The value of MCα  that results in the smallest error for ]Re[ zeΔ  corresponding 

to the data-sets represented by the black, red and green horizontal bands in (a) is 

taken as the representative loss-parameter value ( ]Re[ zα ) for that data-set. 

 

Figure 4.5 (a) shows a contour plot of the PDF-error function ]Re[ zeΔ  for a 

Loss-Case 0 cavity in the frequency range of 6 to 12 GHz. The experimental setup is 

as described in section 3.1, but the metallic perturbations used for generating the 

cavity-ensemble are of the type used in section 3.2. The color-scale indicates the 
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magnitude of the error function (blue=large error, red=small error). The red region 

indicates where there is good agreement between the experimentally obtained PDF 

for ]Re[z  and the corresponding PDF generated numerically from Monte-Carlo 

simulations for a specified value of MCα . By taking 1GHz wide cavity data-sets, 

which are represented as the lightly-colored rectangular-bands parallel to the MCα -

axis in Fig. 4.5(a), I can uniquely determine the most-likely value of MCα ( ]Re[ zα= ) 

which results in the smallest error for ]Re[ zeΔ  corresponding to a given data-set. This 

is shown in Fig. 4.5(b) for three cavity data-sets in the frequency range of 6.6-7.6 

GHz (black circles), 8.5-9.5 GHz (red circles) and 10.8-11.8 GHz (green circles) 

corresponding to the black, red and green horizontal bands in Fig. 4.5(a) respectively. 

As shown in Fig. 4.5(b), the most likely value of  MCα ( ]Re[ zα= ) that corresponds to 

the data-set represented by the black, red and green horizontal bands in Fig. 4.5(a) is 

1.05.1]Re[ ±=zα , 1.08.1]Re[ ±=zα  and 1.01.2]Re[ ±=zα  respectively.  A similar 

analysis showing the contour plot of the PDF-error function ]Im[zeΔ  obtained by 

fitting the imaginary part of the normalized impedance PDFs is shown in Fig. 4.6(a), 

and is used for determining the most-likely value of MCα ( ]Im[zα= ) corresponding to 

the same three cavity data-sets in the frequency range of 6.6-7.6 GHz (black circles) 

with 1.04.1]Im[ ±=zα  , 8.5-9.5 GHz (red circles) with 1.07.1]Im[ ±=zα  and 10.8-11.8 

GHz (green circles) with 1.00.2]Im[ ±=zα , that correspond to the black, red and green 

horizontal bands in Fig. 4.6(b) respectively. As indicated by the nature of the red-

region in Fig. 4.5(a) (and Fig. 4.6(a)), it can be inferred that the value of ]Re[ zα (and 
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]Im[zα ) smoothly increases as a function of frequency. This frequency-trend for ]Re[ zα  

and ]Im[zα  is expected considering that the losses within the cavity are also frequency-

dependent and increase with frequency.  

 

 

Fig.4.6: (a) Contour plot for the Loss-Case 0 PDF-error function ]Im[zeΔ with the 

color-scale indicating the magnitude of the PDF-error function (blue=large error, 

red=small error). The red region indicates choices of MCα  in the numerical 

simulations for which there is good agreement (small error) between the 

experimentally obtained PDF for ]Im[z  and the corresponding PDF generated from 

random matrix Monte Carlo simulations. The black, red and green horizontal bands 

indicate 1GHz wide cavity data-sets for which the value of α  is to be determined in 

(b). (b) The value of MCα  that results in the smallest error for ]Im[zeΔ corresponding to 

the data-sets represented by the black, red and green horizontal bands in (a) is taken 

as the representative loss-parameter value ( ]Im[zα ) for that data-set. 
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The black circles in Fig. 4.7 show the derived values of ]Re[ zα  and ]Im[zα  for 

all the 1GHz wide data-sets in Fig. 4.5 and Fig. 4.6 form 6 to 12 GHz. The red 

horizontal and vertical error bars indicate the estimated error in my determination of 

]Re[ zα  and ]Im[zα  respectively for each data-set.  A linear fit (blue line) constrained to 

go through the origin  gives the relation ]Re[]Im[ )1.00.1( zz αα ±= , which again testifies 

to the fact that a single loss-parameter simultaneously fits both the real and imaginary 

parts of the normalized impedance PDFs (within the limits of experimental error). In 

the results that follow in this chapter, I define the experimentally determined loss-

parameter (α ) to be the average value of ]Re[ zα  and ]Im[zα  obtained from the PDF 

fitting procedure for that data-set.  

 

Fig. 4.7: Comparison of the derived loss-parameter values ]Re[ zα  and ]Im[zα   for the 

data-sets shown in Fig. 4.5(a) and Fig. 4.6(a) are shown as the black circles and are 

obtained by fitting the PDFs of the real and imaginary parts of the normalized 
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impedance with those generated numerically from random matrix Monte Carlo 

simulations. The red errors bars indicate the estimated error in the determination of 

]Re[ zα  and ]Im[zα . The blue line which is a linear fit to all the black circles shows that 

for all data-sets ]Im[]Re[ zz αα ≅  . 

 

The black, red and green circles in Fig. 4.8 show the experimentally obtained 

PDFs of the real (Fig. 4.8 (a)) and imaginary (Fig. 4.8 (b)) parts of the normalized 

impedance z  for the 1GHz wide data-sets corresponding to the black (6.6-7.6 GHz), 

red (8.5-9.5 GHz) and green (10.8-11.8 GHz) lightly-colored rectangular-bands, 

respectively, shown in Fig. 4.5(a) and Fig. 4.6(a). The solid black, red and green solid 

lines in Fig. 4.8 are numerically generated PDFs from random matrix Monte Carlo 

simulations for values 45.1=α , 75.1=α  and 05.2=α  respectively. It can be seen 

that in all three cases, the agreement between the experimentally obtained PDFs and 

those generated numerically are in good agreement. 
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Fig. 4.8: (a) Experimentally obtained PDFs of the real part of the normalized 

impedance z  for the data-sets represented by the lightly-colored rectangular-bands in 

Fig. 4.5(a)- black circles: 6.6-7.6 GHz; red circles: 8.5-9.5 GHz, green circles: 10.8-

11.8 GHz. (b) Experimentally obtained PDFs of the imaginary part of the normalized 

impedance z  for the data-sets represented by the lightly-colored rectangular-bands in 

Fig. 4.6(a)- black circles: 6.6-7.6 GHz; red circles: 8.5-9.5 GHz, green circles: 10.8-

11.8 GHz. The black, red and green solid lines in (a) and (b) are predictions from 

Random Matrix Theory for the values of α (=1.45, 1.75 and 2.05) derived from the 

PDF fitting method for each of the data-sets indicated by the black, red and green 

circles respectively. 

 

 Now that I have established a robust method to determine the value of the 

loss-parameter α  corresponding to my data-sets, I proceed to the second step of the 

analysis for experimentally testing the relation between the variance of the real and 

imaginary parts of the normalized impedance and the loss-parameter α  [45]. 

Reference [25] predicts that in the limit 1>>α , the variance )( 2σ  of the real and 
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imaginary parts of the time-reversal symmetric normalized impedance PDFs is related 

to α  through Eq.(2.6). 

 In Fig. 4.9, the hollow stars (circles) represent the variance 2σ  of the real 

(imaginary) part of the normalized impedance for Loss-Case 0 and Loss-Case 2 

cavities with cavity height h=7.87mm. The red “ + ”(“×”) represent the variance 2σ    

of the real (imaginary) part of the normalized impedance for Loss-Case 0 cavity with 

cavity height h=1.78 mm. In all cases, the variance of the real and imaginary parts of 

the normalized impedance PDFs are in close agreement. The values of the loss-

parameter α  for each of the symbols which correspond to a particular data-set 

between 6 and 12 GHz was determined by the PDF fitting method discussed 

previously. 
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Fig. 4.9: Plot of variances of ]Re[z (stars) and ]Im[z  (circles) versus fit parameter 

α for Loss-Case 0 and Loss-Case 2 cavities of height mmh 87.7= . Plot of variances 

of ]Re[z (“ + ”) and ]Im[z  ( “×”) versus fit parameter α  for Loss-Case 0 cavity of 

height mmh 78.1= . The black curve is the function )/(12 πασ = . The blue curve is 

generated numerically from Random Matrix Theory. 

 

  The black curve in Fig. 4.9 is the function )/(12 πασ = . It can be observed 

that for values of 5<α , the experimental data (shown by the symbols) does not 

conform with the black curve. This is expected considering Eq. (2.6) is valid in the 

limit of large α  ( 1>>α ). The blue curve is generated numerically from random 

matrix Monte-Carlo simulations with square matrices of size 400=N , and the value 
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of α  in the simulations ranging from 0.1 to 15 in steps of  0.1 (see section 2.5). There 

is good agreement between the experimental data shown by the symbols and the blue 

curve for values of 5<α . For values of 5>α , the difference between the black and 

the blue curve is difficult to differentiate given the current experimental precision. 

However, overall there is good agreement between the data and the theoretical 

predictions of [25] (for 5>α ) and with predictions from Random Matrix Theory (for 

5<α ). This suggests another method to determine the value of the loss-parameter α  

for the data-sets based on the variances of the normalized impedance PDFs, which is 

elucidated in Chapter 5. 

4.1.4 Absorber Perimeter Ratio ( Ξ ) 

This subsection presents results that show my ability to experimentally fine-

tune the value of the cavity loss-parameter α  by controlling the number of 

microwave absorbing strips placed within the cavity. As explained in chapter 3, the 

degree of loss in the cavity can be controlled by placing 15.2 cm long microwave-

absorbing strips along the inner side-walls of the cavity. I thus introduce an α -

control parameter called the “Absorber Perimeter Ratio”(Ξ ), which is defined as the 

ratio of the perimeter of the cavity covered with absorbing strips to the total cavity 

perimeter. The parameter Ξ  can vary from 0 to 1 corresponding to the Loss-Case 0 or 

the “Radiation-Case” cavity setups respectively. Figure 4.10 examines the 

dependence of the experimentally determined value of α  versus Ξ . Each symbol 

corresponds to the value of α  for a given Loss-Case cavity in the frequency range of 

7.2-8.4 GHz, i.e., Loss Case 0- hollow star; Loss Case 1- hollow circle; Loss Case 2- 

hollow triangle; Loss Case 3- hollow square; Loss Case 4- solid star.   The α  values 
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were determined by the PDF fitting method described in section 4.1.3.  The red error 

bars, which are roughly the size of the symbols in Fig. 4.10, indicate the estimated 

error in the determination of α . The data shows a clear linear relationship of α  on 

the absorber perimeter ratio Ξ .  This linear relationship is expected because Q/1  is 

proportional to the dissipated power in the cavity, which scales with the amount of 

microwave absorber placed in the cavity.  A linear fit (blue line) of the data is quite 

accurate and shows a zero-crossing for α  at 035.0−=α .  This suggests that the 

empty cavity losses correspond to covering the walls of a perfectly conducting cavity 

with 3.5% coverage of microwave absorber [58]. 
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Fig. 4.10: The relationship between the cavity loss-parameter α  and the absorber 

perimeter ratio ( Ξ ) is shown between 7.2 and 8.4 GHz. The symbols represent Loss 

Case 0- hollow star; Loss Case 1- hollow circle; Loss Case 2- hollow triangle; Loss 

Case 3- hollow square; Loss Case 4- solid star. The best linear fit to all the data points 

is shown as the solid blue line. The x-intercept of this line indicates the Ξ -value 

required to make a loss-less cavity have the same α -value as the experimental Loss-

Case 0 cavity of Fig. 3.1(a). 
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4.2 Experimental Results for Normalized Scattering Coefficient s  

In this section, I present my experimental findings for the statistical properties 

of the normalized scattering coefficient s, for different coupling geometries and 

degrees of loss. This section is divided into five parts. In the first part, I give an 

example for the PDF of s at a specific degree of quantified loss and a certain coupling 

geometry. In the second part, I fix the degree of quantified loss, but vary the coupling 

by using coaxial cable antennas having inner conductors of different diameters 

(2a=1.67mm and 2a=0.635mm). The PDF histograms for the magnitude and phase of 

s in these two cases will be compared. The third part tests the trend of the PDF of |s|2 

for a given coupling geometry and for three different degrees of quantified loss. Good 

agreement with Random Matrix Theory is found in all cases. In the fourth part, I 

experimentally test a relation between the cavity and radiation power reflection 

coefficients as predicted by [25]. Finally, in the fifth part, I show that it is possible to 

accurately reconstruct the statistical aspects of the raw cavity scattering coefficient 

(magnitude and phase) given only the value of α  and the measured radiation 

scattering coefficient. 

 

4.2.1 Statistical Independence of || s  and sφ  

The first example I give is based on Loss-Case 0 (i.e., no absorbing strips in the 

cavity) and coupling through a coaxial cable with inner diameter 2a=1.27mm [46]. 

Having obtained the normalized impedance z, I transform z into the normalized 

scattering coefficient s using Eq. (2.8). Since the walls of the cavity are not perfect 

conductors, the normalized scattering coefficient s is a complex scalar with modulus 



 

 83 
 

less than 1. (In Loss-Case 0, most of the loss occurs in the top and bottom cavity 

plates since they have much larger area than the side walls.) Based on Dyson’s 

circular ensemble, one of the most important properties of s is the statistical 

independence of the scattering phase sφ  and the magnitude |s|. Figure 4.11(a) shows a 

contour density plot of s in the frequency range of 6 to 9.6 GHz for Loss Case 0. The 

grayscale level at a given point in Fig. 4.11(a) indicates the number of points 

for ]}Im[],{Re[ ss  that fall within a local rectangular region of size 02.002.0 × . Next, 

arbitrary angular slices of this distribution that subtend an angle of 4/π  radians at the 

center are taken and the histogram approximations to the PDF of || s  using the points 

within those slices are computed.  The corresponding PDFs of || s  for the three slices 

are shown in Fig. 4.11(b). It can be observed that these PDFs are essentially identical, 

independent of the angular slice. Figure 4.11 (c) shows PDFs of sφ  computed for all 

the points that lie within two annuli defined by 3.0||0 ≤≤ s (stars) and 

6.0||3.0 ≤< s (hexagons). These plots support the hypothesis that the magnitude of s 

is statistically independent of the phase sφ  of s and that sφ  is uniformly distributed in 

π−  to π . To my knowledge, this represents the first experimental test of Dyson’s 

circular ensemble hypothesis for wave-chaotic scattering. 
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Fig. 4.11: (a) Polar contour density plot for the real and imaginary components of the 

normalized cavity s ( )exp(|| siss φ= ) for Loss-Case 0 in the frequency range of 6 to 

9.6 GHz. The angular slices with the symbols (triangles, circles, squares) indicate the 

regions where the PDF of || s  is calculated and shown in (b). Observe that the PDF of 

the three regions are essentially identical. (c) The PDF of the phase sφ  of the 

normalized scattering coefficient s for two annuli defined by 3.0||0 ≤≤ s (stars) and 

6.0||3.0 ≤< s (hexagons). Observe that these phase PDFs are nearly uniform in 

distribution. The uniform distribution is shown by the solid line ( πφ 2/1)( =P ). This 

is consistent with the prediction that the || s  is statistically independent of the phase 

sφ , of s. 

 

4.2.2 Detail-Independence of s  

As shown in the previous section for the normalized impedance z , here I verify 

that the normalized s also does not include any artifacts of system-specific, non-ideal 
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coupling [46]. I take two identical wave chaotic cavities and change only the inner 

diameter of the coupling coaxial cable from 2a=1.27 mm (represented as the blue 

stars in Fig. 4.12) to 2a=0.635 mm (represented as the red circles in Fig. 4.12). Since 

the modification of the coaxial cable size barely changes the properties of the cavity, I 

assume that the loss parameters in these two cases are the same. The difference in the 

coupling geometry manifests itself as gross differences in the distribution of the raw 

cavity scattering coefficients S . This is clearly observable for the PDFs of the cavity 

power reflection coefficient | S  |2 as shown in Fig. 4.12(a) and the PDFs for the phase 

of S  (denoted Sφ ) shown in Fig. 4.12(c), for Loss-Case 0 over a frequency range of 6 

to 11.85 GHz. However, after measurement of the corresponding radiation impedance 

and the normalization procedure described above, I observe that the PDFs for the 

normalized power reflection coefficients are nearly identical, as shown in Fig. 4.12 

(b)  for |s|2  and the phase )( sφ in Fig. 4.12(d).  This supports the theoretical 

prediction that the normalized scattering coefficient s is a universal quantity whose 

statistics does not depend on the nature of the coupling antenna.  Similarly, in Fig. 

4.12(c), the phase Sφ  of the cavity scattering coefficient S  shows preference for 

certain angles. This is expected because of the non-ideal coupling (impedance 

mismatch) that exists between the antenna and the transmission line. After 

normalization, the effects of non-ideal coupling are removed and only the scattering 

phase of an ensemble of ideally coupled chaotic systems (in which all scattering 

phases are equally likely) is seen. Hence, consistent with theoretical expectations of 

[25], the phase sφ  of normalized s data show an approximately uniform distribution 

(Fig.4.12(d)).  
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Fig. 4.12: (a) PDF for the un-normalized Loss-Case 0 cavity 2|| S  in the frequency 

range of 6 to 11.85 GHz for two different coupling antenna diameters 2a = 0.635 mm 

(red circles) and 2a = 1.27 mm (blue stars). (b) PDF for the normalized cavity 2|| s  in 

the frequency range of 6 to 11.85 GHz for two different coupling antenna diameters 

2a = 0.635 mm (red circles) and 2a = 1.27 mm(blue stars). Note that the disparities 

seen in (a) on account of the different coupling geometries disappear after 

normalization. (c) PDF for the un-normalized cavity phase ( Sφ ) for Loss Case 0 in 

the frequency range of 6 to 11.85 GHz for two different coupling antenna diameters 

2a = 0.635 mm (red circles) and 2a = 1.27 mm (blue stars). (d) PDF for the 

normalized cavity phase (φs) in the frequency range of 6 to 11.85 GHz for two 

different coupling antenna diameters 2a = 0.635 mm (red circles) and 2a = 1.27 mm 
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(blue stars). The normalized phase PDFs for the stars and circles in (d) are nearly 

uniformly distributed (the black line in (d) shows a perfectly uniform distribution 

πφ 2/1)( =P ). 

 

4.2.3 Variation of s  with loss 

Having established that the coupling geometry is irrelevant for the distribution 

of s , I fix the coupling geometry (coaxial cable with inner diameter 2a=1.27 mm) 

and vary the degree of quantified loss within the cavity. Three loss cases will be 

considered, namely, Loss-Case 0, 1 and 3 [46].  

The symbols in Fig. 4.13 (presented on a semi-log scale) show the PDF of the 

normalized power reflection coefficient ( 2|| sr = ) in the frequency range 6.5 to 7.8 

GHz for three different Loss-Cases (stars: Loss-Case 0, circles: Loss-Case 1, squares: 

Loss-Case 3). These data-sets correspond to α -values of 1.08.0 ± (stars), 

1.04.2 ± (circles) and 1.05.6 ± (squares), which were obtained from the PDF fitting 

method described in section 4.1.3. The solid blue lines are the numerical PDFs of r , 

i.e., )(rP ( presented on a semi-log scale) generated from random matrix Monte Carlo 

simulations (see section 2.5) for values of α =0.8, 2.4 and 6.5. I observe that the 

predictions from Random Matrix Theory conforms well to my experimental data for 

all degrees of loss.  
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Fig.4.13: PDF for the normalized power reflection coefficient 2|| sr = on a natural log 

scale for Loss Case 0, 1, 3 (stars, circles and squares respectively) in the frequency 

range of 6.5 to 7.8 GHz. Also shown is the prediction from Random Matrix Theory 

(solid lines) for )(rP  using the values of α   obtained from the PDF fitting method 

described in section 4.1.3. 

 

4.2.4 Relation Between Cavity and Radiation Reflection Coefficients 

In this subsection, I would like to examine how the measured cavity power 

reflection coefficient depends only on the radiation scattering coefficient and losses in 
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the cavity [46]. Reference [25] predicts that the average value of the cavity power 

reflection coefficient 2|| S  depends only on the magnitude of the radiation scattering 

coefficient ( || radS ) and the loss parameter α , and is independent of the phase of 

radS . The quantity || radS  is related to the radiation impedance 

( ]Im[]Re[ radradrad ZjZZ += ) through the transformation, 

22

22

])(Im[)](Re[
])(Im[)](Re[||

radorad

radorad
rad ZZZ

ZZZS
++
+−

= .                                 (4.1)   

I consider a cavity having quantified loss (Loss Case 0, 1 and 3), with a coupling port 

of diameter 2a=1.27 mm and over the frequency range of 6.5 to 7.8 GHz. Having 

experimentally obtained the normalized z  as described in section 3.1, I then simulate 

an ensemble of similar cavities but with different coupling “geometries”. This is done 

by means of a lossless two-port impedance transformation [25] of the z  data, as 

described by the relation, 

)/1(
1'

ξjz
z

+
= .                                         (4.2) 

which corresponds to adding a reactive impedance ξ/j−  in parallel with the 

impedance z . 

The quantity 'z  thus simulates the impedance of a hypothetical cavity that is 

non-ideally coupled to the excitation port, and the coupling geometry is characterized 

by the real factor ξ , which can be varied in a controlled manner. I also define a 

transformed radiation impedance ( '
radz ) given by, 

)1(
1'

ξj
zrad +

= .                                                   (4.3) 
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For the generation of '
radz , the factor ξ  is varied over the same range of 

values as used to generate 'z . Having determined 'z  and its corresponding '
radz , I 

determine the scattering coefficients 's  and '
rads  through the transformations, 

)1'/()1'(' +−= zzs     (4.4) 

)1/()1( ''' +−= radradrad zzs                 (4.5) 

A range of ξ  values are chosen to cover all possible coupling scenarios. I then 

plot the average of 2|'| s  (i.e., 2|'| s ) as a function of '
rads . This approach is followed 

for all three loss cases (Loss case 0, 1 and 3) resulting in the data sets with star, 

circles and squares, respectively, in Fig. 4.14.   

First note that all curves originate from the point 1|||'| '2 == radss  , which may 

be thought of as the perfectly mismatched case.  Next consider 1|| ' <rads , and observe 

that as the losses increase, the curves shift downwards for a fixed coupling 

(characterized by || '
rads ). This is intuitively reasonable because, as the absorption 

(losses) within the cavity increases, less signal is expected to return to the antenna 

(i.e. smaller |'| s ) for a given coupling || '
rads . From the PDF fitting method described 

in section 4.1.3, I determine α  to be 1.08.0 ± (stars), 1.04.2 ± (circles) and 

1.05.6 ± (squares) for Loss-Case 0, 1 and 3 respectively. The solid blue lines in Fig. 

4.14 are obtained from the Random Matrix Theory using Monte Carlo simulations 

(see section 2.5) by first generating an ensemble of the normalized impedance z  with 

the appropriate values for α (=0.8, 2.4 and 6.5). Next, this ensemble of z  is 

transformed using Eq. (4.2) and Eq.(4.3) with the same range of coupling factors (ξ ) 
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as used for the experimentally determined 'z . Finally, these values of 'z  are 

converted to 's   using Eq.(4.4). Good agreement between the numerical simulations 

from Random Matrix Theory (solid blue lines in Fig. 4.14) and the experimentally 

derived points is observed.  

For a given lossy cavity one can also consider its lossless N -port equivalent. 

By the lossless N -port equivalent I mean that the effect of the losses distributed in 

the walls of our cavity can be approximated by a lossless cavity with 1−N  extra 

perfectly-coupled (pc) ports through which power coupled into the cavity can leave. 

The point 0|||| ' == radrad sS  in Fig. 4.14 corresponds to perfect coupling. In this case, 

Ref. [25] predicts that the vertical axis intercept of these curves corresponds to the 

lossless N -port equivalent of the distributed losses within the cavity; i.e., at 

0|| ' =rads , [25] predicts that )1/(2|'| 2 += Ns
pc

 (for time-reversal symmetric wave 

chaotic systems).  Thus, in the experiment the quantified loss in Loss-Case 0, 1 and 3 

is equivalent to about 11, 24 and 45 perfectly-coupled ports, respectively.   In other 

words, for all intents and purposes, the cavity can be considered loss-less but 

perfectly coupled to this number of ports. 
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Fig. 4.14: Dependence of the average of the cavity power reflection coefficient 

2|'| s  on the magnitude of the radiation scattering coefficient || '
rads , for different loss 

cases (Loss Case 0: stars; Loss Case 1: circles; Loss Case 3: squares). The data is 

shown for the frequency range of 6.5 to 7.8 GHz and corresponds to estimated α -

values of 1.08.0 ± (stars), 1.04.2 ± (circles) and 1.05.6 ± (squares). Also shown are 

the numerical simulations from Random Matrix Theory based upon α -values of 0.8, 

2.4 and 6.5 (solid blue lines). 
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4.2.5 Recovering Raw Cavity S  given radS  and α  

In sections 4.2.1 through 4.2.4, I used the radiation impedance ( radZ ), or the 

radiation scattering coefficient ( radS ), as a tool to characterize the non-ideal coupling 

(direct processes) between the antenna and the cavity. This quantity is measurable 

and is only dependent on the local geometry around the port. References [35, 36] use 

configuration and frequency averaged scattering data to obtain an approximation to 

the true ensemble average, >><< S . For a given center frequency 0f , this procedure 

relies on the satisfaction of two requirements: first the range of fΔ must be large 

enough to include a large number of modes; second, radS  must vary little over the 

range of fΔ . 
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Fig. 4.15: Polar plot for the cavity scattering coefficient )Im()Re( SjSS += is shown 

for a frequency range of 6 to 12 GHz for Loss-Case 0 and with a coupling port of 

diameter 2a = 1.27 mm. The blue trace represents one single rendition of the cavity 

for a selected position and orientation of the perturbers. The black trace is the 

configurational average 100〉〈S  over one hundred different locations and orientations 

of the perturbers within the cavity. The red trace shows the radiation scattering 

coefficient for the same port. 

 

  The nature of the variation of S  with frequency is illustrated in Fig. 4.15, 

where a plot )}Im(),{Re( SS  of the complex scattering coefficient for a cavity in the 

frequency range of 6 to 12 GHz is shown [46].  The blue trace shows results for S  for 

a single configuration of the cavity corresponding to a given position and orientation 

of the perturbers (Fig. 3.1(a)). Isolated resonances are seen as circular loops in the 
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polar plot. The degree of coupling is indicated by the diameter of the loops. 

Frequency ranges where the coupling is good would manifest themselves as large 

loops, while those frequency ranges with poor coupling result in smaller loops. By 

averaging one-hundred such different configurations of this cavity for different 

positions and orientations of the perturber, the black trace denoted as 100〉〈S  is 

obtained. Note that even with one hundred cavity renditions, the fluctuations in 100〉〈S  

are still present and are seen as the meanders in the black trace. The red trace, which 

corresponds to the radiation scattering coefficient for this antenna geometry, is devoid 

of such fluctuations (because there are no reflected waves from the far walls back to 

the port) and is easily obtainable in practice without resorting to generating large 

configurationally averaged sets of cavities. Moreover, since the radiation impedance 

of the port is also a function of frequency, there is no constraint on the frequency span 

where the analysis for obtaining the universal statistics of s  (or z ) can be carried out.  

To quantitatively illustrate this point, I simulate the non-universal scattering 

statistics of a given cavity for a given type of coupling using only the measured 

radiation impedance of the coupling port and the numerically generated normalized 

impedance z  from Random Matrix Theory, which depends only upon the net losses 

within the cavity [46]. I consider a Loss Case 0 cavity, over a frequency range of 6 to 

7.5GHz, which is excited by means of a coaxial cable of inner diameter 

(2a=1.27mm). The variation in || 100>< S  (inset of Fig. 4.16 (b)) indicates that the 

coupling characteristics for this setup fluctuate over the given frequency range, 

undergoing roughly four or five oscillations over a range in || 100>< S  of order 0.2. 
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Thus the frequency averaged || 100>< S   would be expected to be an unreliable 

estimate to parameterize the coupling over this frequency range.  

I can estimate the value of α  (= )4/(2 QAk π ) from first principles by 

specifying the values of the wave-number 142(≈k )1−m  corresponding to the center 

frequency of 6.75 GHz, enclosed physical-area of the cavity 115.0≈A 2m  and 

typical loaded 225~Q  (from )(11 ωS  measurements) of the cavity within this 

frequency range (see Appendix [C]); thereby  yielding an estimated 8.0≅α . I use 

this α –value to generate an ensemble of z  from random-matrix Monte-Carlo 

simulations with square matrices of size 400=N  (see section 2.5). I then combine it 

with the measured )(ωradZ  of the antenna using Eq.(2.4), and finally employ Eq.(3.1) 

to obtain an estimate of the non-universal system-specific scattering coefficient, 

which I denote as 
~
S . 

In Fig. 4.16(a), the PDF of 2
~

|| S  is shown as the solid red trace, while the 

experimentally measured PDF of 2|| S  is shown as the black stars. While in Fig. 4.16 

(b), the PDF of ~
S

φ is shown as the solid red trace with experimentally measured PDF 

of Sφ  shown as the black stars. I observe relatively good agreement between the 

numerically generated estimate and the actual data. This result validates the use of the 

radiation impedance (scattering coefficient) to accurately parameterize the system-

specific, non-ideal coupling of the ports and also provides a way to predict 

beforehand the statistical properties of other complicated enclosures non-ideally 
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coupled to external ports. An extension of this result to predict the range of voltages 

induced within a computer box (three dimensional cavity) is explained in Chapter 8. 

 

 

Fig. 4.16: (a) The experimental PDF for the Loss-Case 0 cavity power reflection 

coefficient (|S|2) (black  over a frequency range of 6 to 7.5GHz. Also shown is the 

numerical estimate 
~

2 )||( SP (solid red trace) determined from Random Matrix Theory 

and the experimentally measured radiation impedance of the port ( radZ ). (b) The 

experimental PDF for the Loss-Case 0 cavity scattering phase (φs) (black stars) over a 

frequency range of 6 to 7.5GHz. Also shown is the numerical estimate P )( ~
S

φ  (solid 

red trace) determined from Random Matrix Theory and the experimentally measured 

radiation impedance of the port ( radZ ). The inset shows the fluctuation in 

|| 100〉〈S (black stars) over the frequency range of 6 to 7.5GHz, while the solid blue 

trace shows the magnitude of the experimentally measured radiation scattering 

coefficient ( || radS ). 
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4.4 Summary of Chapter 4 and Conclusions 

The results tested in this chapter are based on very general considerations and 

should apply equally well to conductance measurements through quantum dots (see 

Chapter 6), impedance or scattering matrix measurements on electromagnetic or 

acoustic enclosures (see Chapter 8), and scattering experiments from nuclei and 

Rydberg atoms.  In conclusion, I have examined key testable predictions for the 

universal statistics of impedance and scattering fluctuations for one-port time-reversal 

symmetric wave-chaotic systems and found satisfactory agreement on all 

experimental issues directly related to the theory in Chapter 2 [25].  I find that a 

single control parameter characterizing the cavity loss fully describes the shapes and 

scales of these fluctuations in accordance with Random Matrix Theory and is 

independent of system specific details of port-coupling, shape of the wave-chaotic 

cavity, etc. 

 

 

 

 

 

 

 



 

 99 
 

Chapter 5:  Universal Fluctuations in 2-port Impedance, 
Admittance and Scattering Matrices of Wave-Chaotic Systems 

 
In this chapter, I experimentally extend the “radiation impedance” approach of 

Refs. [25, 26] and chapter 4 to two-port wave-chaotic cavities. The quantities of 

interest here are the eigenvalues of the normalized impedance ( zt ), admittance ( yt ) 

and scattering matrices ( st ) of wave-chaotic systems. For a wave-chaotic cavity 

driven by two-ports, each zt , yt  or st  matrix produces two complex-eigenvalues with  

certain α -dependent statistical properties that are assumed to be explained by 

Random Matrix Theory, where α  represents the cavity loss-parameter as explained 

in chapter 2. The experimental validation of this assumption is the focus of this 

chapter. The experimental setup and data analysis to obtain zt , yt  and st , for the 

results presented in this chapter has been explained in section 3.2.  

Reference [26] has shown that the marginal Probability Density Functions 

(PDFs) of the real and imaginary parts of the eigenvalues of zt (denoted as ]Re[ zt
t
λ  

and ]Im[ zt
t
λ  respectively), for a given value of α , are statistically identical to the 

PDFs of ]Re[z  and ]Im[z  respectively for the same value of α . Here z  represents 

the one-port normalized impedance (see chapter 4). Using this fact, I resort to an 

alternative method to determine the value of α  for my experimental data-sets, for the 

results presented in this chapter. This new method is based on an extension of 

Eq.(2.6) to two-port systems, and states that the variance( 2σ ) of ]Re[ zt
t
λ  and ]Im[ zt

t
λ  

for time-reversal symmetric systems are related to α  through, 
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πα
σσ λλ

12
]Im[

2
]Re[ ≅≅

zz tt
tt        for 1>>α .                   (5.1) 

The one-port version of Eq.(5.1) i.e, Eq.(2.6), has been verified experimentally in 

Ref. [45] and chapter 4. Accordingly, Eq.(5.1) will be assumed to hold true for the 2-

port results discussed in this paper for data-sets with 5>α . For data-sets with 5<α , 

the following procedure is employed.  First, I numerically generate marginal PDFs of 

the real and imaginary parts of the normalized impedance eigenvalues using random-

matrix Monte-Carlo simulations with square matrices of size 1000=N , and the value 

of α  in the simulations ranging from 0.1 to 5 in steps of 0.1 (see section 2.5). I 

determine the variance( 2σ ) of these numerically generated PDFs and fit their 

dependence on α  to a polynomial function )(2 ασ Θ=  of high order (see blue curve 

in Fig. 4.9). I then determine the variance of the PDF of the real part, i.e. 2
]Re[ zt

t
λσ  

(which is equal to the variance of the PDF of the imaginary part 2
]Im[ zt

t
λσ to good 

approximation [25, 26, 45]; also see Chapter 4) of the experimentally-determined 

normalized impedance eigenvalues and solve the inverse polynomial function 

)( 2
]Re[

1
zt
t
λσα −Θ=  to obtain a unique estimate of α  corresponding to that experimental 

data-set. 

 This chapter is organized into the following sections. Sections 5.1 through 5.3 

present my experimental results on the universal fluctuations in the eigenvalues of zt , 

yt  and st . Firstly, in section 5.1, I present experimental data showing the similarity in 

the PDFs for the eigenvalues of zt  and yt , and also compare these experimentally 

obtained PDFs with those from Random Matrix Theory for increasing values of α . A 

technical issue encountered in these 2-port experiments is the presence of non-zero, 



 

 101 
 

off-diagonal terms in the measured radZ
t

. These terms account for the direct-path 

processes (“cross-talk”) between the two ports and come about because of the finite 

physical separation between the two-ports in the experiment during the radiation 

measurement. The role of these non-zero, off-diagonal radZ
t

 terms in determining the 

universal PDFs of zt  is explained in section 5.2. Section 5.3 is dedicated to the 

universal fluctuations in the eigenvalues of st , and is divided into three parts. In sub-

section 5.3.1, the statistical independence of the magnitude and phase of the 

eigenvalues of st  is experimentally established. The marginal distributions for the 

magnitude and phase of the eigenvalues of st  are then compared with predictions 

from Random Matrix Theory.  Sub-section 5.3.2 then explores the evolution of the 

joint PDF of the st -eigenphases as a function of increasing loss. In sub-section 5.3.3, 

I experimentally test the predictions for the joint PDF of sstt † (where † denotes the 

conjugate transpose) from Ref. [59] as a function of cavity loss.  Section 5.4 

concludes this chapter with a summary of my experimental findings and its 

implications. 

 

5.1 Experimental Results for the PDFs of the zt and yt  eigenvalues 

5.1.1 Marginal PDFs of the zt  and yt eigenvalues 

In this section I determine the marginal PDFs of the eigenvalues of the 

normalized impedance zt  and normalized admittance yt . It has been theorized in [60] 

that these two quantities have identical distributions for their eigenvalues. References 

[25, 26] show that attaching an arbitrary lossless two-port network at the interface 
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between the plane of measurement, and the cavity does not alter the statistics of zt . If 

this lossless two-port is assumed to be a transmission line with an electrical-length 

equal to one-quarter wavelength at the driving frequency, then the lossless two-port 

acts as an “impedance inverter” [61] thereby presenting a cavity admittance at the 

plane of measurement. This similarity in the statistical description of zt  and yt  is 

predicted to be extremely robust and independent of loss in the cavity, coupling, 

driving frequency, etc. 

 

Fig. 5.1: PDFs for the real (a) and imaginary (b) parts of the grouped eigenvalues of 

the normalized cavity impedance ztλ̂  (hollow stars : Loss-Case 0; hollow circles : 

Loss-Case 1; hollow triangles : Loss-Case 2) in the frequency range of 10.5-12 GHz. 

The PDFs for the real (a) and imaginary (b) parts of the grouped eigenvalues of the 

normalized cavity admittance ytλ̂  (solid stars : Loss-Case 0; solid circles : Loss-Case 

1; solid triangles : Loss-Case 2) in the frequency range of 10.5-12 GHz are also 

shown. The red error bars indicate the typical statistical binning error of the data. 

Also shown are the single parameter, simultaneous fits for both impedance and 
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admittance PDFs (blue solid lines), where the loss parameter α  is obtained from the 

variance of the data in (a). 

 

For my experimental test of this prediction, I consider the three loss cases, 

Loss-Case 0, 1 and 2, in the frequency range 10.5-12GHz. By an eigenvalue 

decomposition, each zt  and yt  matrix yields two complex eigenvalues, which I group 

together to form ztλ̂  and ytλ̂  respectively. I observe that grouping the two eigenvalues 

together as opposed to randomly considering one of the two eigenvalues separately 

does not alter the statistical results that follow. Histograms of the real and imaginary 

parts of ztλ̂  and ytλ̂  are plotted in Fig. 5.1. The hollow stars, circles and triangles in 

Fig.5.1(a) (Fig.5.1(b)) correspond to the histogram approximations of the PDF of 

]ˆRe[ ztλ  ( ]ˆIm[ ztλ  ) for Loss-Case 0, 1 and 2 respectively. The evolution of these 

PDFs for ]ˆRe[ ztλ  and ]ˆIm[ ztλ  with increasing loss, are in qualitative agreement with 

the description given in Ref. [26] and chapters 2 and 4. As losses increase, it can be 

observed that the PDFs of ]ˆRe[ ztλ   shifts from being peaked at ]ˆRe[ ztλ ~ 0.6 (Loss-

Case 0) to developing a Gaussian-type distribution that peaks near ]ˆRe[ ztλ ~1 (Loss-

Case 2). While in Fig. 5.1(b), as losses increase, the PDFs lose their long tails and 

become sharper. The solid stars, circles and triangles in Fig. 5.1(a) (Fig. 5.1(b)) 

correspond to the histogram approximations of the PDF of ]ˆRe[ ytλ  ( ]ˆIm[ ytλ ) for 

Loss-Case 0, Loss-Case 1 and Loss-Case 2 respectively. The agreement between the 

PDF approximations for ]ˆRe[ ztλ  and ]ˆRe[ ytλ ( ]ˆIm[ ztλ  and ]ˆIm[ ytλ ) is good for all the 

three Loss-Cases. The red error bars are representative of the statistical error 
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introduced from the binning of the data in the histograms. By computing the variance 

of the PDFs for ]ˆRe[ ztλ  and by using the inverse polynomial function 

)( 2
]ˆRe[

1

ztλ
σα −Θ= , I obtain a loss parameter of 1.09.1 ±=α  (Loss-Case 0-stars); From 

the variance of the PDFs for ]ˆRe[ ztλ  and by Eq. (5.1), I obtain a loss parameter of 

1.03.6 ±=α  (Loss-Case 1-circles) and 1.016 ±=α  (Loss-Case 2-triangles). Using 

these loss parameter values, a random matrix Monte Carlo  computation (see section 

2.5) yields the solid blue lines which simultaneously fit the data shown in both Fig. 

5.1(a) and Fig. 5.1(b) for the three loss cases. The agreement between the 

experimentally observed values and the Random Matrix Theory result are in good 

agreement for all three cases and within the bounds of the error bars.  

I also observe a robust agreement between the distributions for ]ˆRe[ ztλ  and 

]ˆRe[ ytλ  as well as between ]ˆIm[ ztλ  and ]ˆIm[ ytλ  over a broad range of frequencies, 

coupling conditions and loss. To highlight this robust nature, in Fig. 5.2, I plot the 

variance of ]ˆRe[ ztλ  (blue squares), ]ˆRe[ ytλ  (green hexagons), ]ˆIm[ ztλ  (red stars) and 

]ˆIm[ ytλ  (black circles) distributions for a Loss-Case 0 cavity measurement. Each 

symbol corresponds to a 1 GHz wide sliding window that steps every 500 MHz over 

the frequency range from 6 to 18 GHz. It can be seen that the four symbols closely 

overlap each other over the entire frequency range.  The agreement between the 

symbols (as predicted by Ref. [25, 26, 60]) is remarkable despite the variation in 

coupling, frequency and loss (which varies from an α -value of about 1 to 3.5 over 

this frequency range) within the cavity [62].  
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Fig. 5.2: The variance of ]ˆRe[ ztλ (blue squares), ]ˆRe[ ytλ  (green hexagons); ]ˆIm[ ztλ  

(red stars) and ]ˆIm[ ytλ  (black circles) distributions are shown as a function of 

frequency from 6 to 18 GHz for Loss-Case 0. The agreement between these four 

quantities is good and robust over the entire frequency range despite the change in 

cavity Q and coupling. 

 

5.1.2 Variation of α  with frequency for the different experimental loss-cases 

In this sub-section, I resort to the PDF-fitting method, which was described in 

Chapter 4, to quantify the evolution of the cavity loss-parameter α  (for the different 

cavity- Loss-Cases) with increasing frequency. As in Chapter 4, I employ a sliding 

window of width 1 GHz wide (over which I assume that the value of α  does not 
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change significantly) that steps every 500 MHz over the frequency range of 3-18 GHz 

for my measured Loss-Case data. I define each 1 GHz window as a “data-set”.  

I then numerically generate PDFs of the real and imaginary parts of the 2-port 

normalized impedance eigenvalues using random-matrix Monte-Carlo (MC) 

simulations with square matrices of size 1000=N , and the value of )( MCαα =  in the 

simulations ranging from 0.1 to 35 in steps of  0.1 (see section 2.5). I define a “PDF-

error” function ∑ −−=Δ
θ

θ θαθ |),(),(| exp fPPe MCMC , which quantifies the error 

between the marginal PDFs of the normalized impedance eigenvalues generated 

numerically from Monte-Carlo simulations (MC) and those determined 

experimentally (exp). Here, θ  corresponds to either the real ])ˆ(Re[ ztλ  or imaginary 

])ˆ(Im[ ztλ  parts of the normalized impedance eigenvalue PDFs ( )(θP ). Instances 

where there is good agreement between the experimentally determined marginal 

PDFs and those generated numerically for a given value of MCα  result in small 

magnitudes for the PDF-error functions ]ˆRe[ z
e

tλ
Δ  and ]ˆIm[ z

e
tλ

Δ . 
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Fig. 5.3: (a) Contour plot for the (i) Loss-Case 0, (ii) Loss-Case 1, (iii) Loss-Case 2  

PDF-error function ]ˆRe[ z
e

tλ
Δ . The common color-scale for (i),(ii) and (iii) is shown in 

(iii) and indicates the magnitude of the PDF-error function ]ˆRe[ z
e

tλ
Δ  (blue=large error, 

red= small error). (b) Contour plot for the (i) Loss-Case 0, (ii) Loss-Case 1, (iii) Loss-

Case 2  PDF-error function ]ˆIm[ z
e

tλ
Δ . The common color-scale for (i), (ii) and (iii) is 

shown in (iii) and indicates the magnitude of the PDF-error function ]ˆIm[ z
e

tλ
Δ  

(blue=large error, red= small error). The red regions indicate those choices of MCα  

for which there is good agreement (small error) between the experimentally obtained 

PDFs and the corresponding PDFs generated from random matrix Monte Carlo 

simulations. 
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Figure 5.3 (a) shows contour plots of the PDF-error function ]ˆRe[ z
e

tλ
Δ  for (i) 

Loss-Case 0, (ii) Loss-Case 1 and (iii) Loss-Case 2 cavities in the frequency range of 

3 to 18 GHz. The color-scale indicates the magnitude of the error function 

(blue=large error, red=small error). The red region indicates where there is good 

agreement between the experimentally obtained PDF for ]ˆRe[ ztλ  and the 

corresponding PDF generated numerically from Monte-Carlo simulations for a 

specified value of MCα . A similar analysis in shown in Fig. 5.3(b) for the contour 

plots of the PDF-error function ]ˆIm[ z
e

tλ
Δ  corresponding to (i) Loss-Case 0, (ii) Loss-

Case 1 and (iii) Loss-Case 2 cavities in the frequency range of 3 to 18 GHz.  

As in Chapter 4, I define the experimentally determined loss-parameter (α ) 

for a given data-set to be the average value of ]ˆRe[ ztλ
α  and ]ˆIm[ ztλ

α , obtained from the 

PDF fitting procedure; where, ]ˆRe[ ztλ
α  and ]ˆIm[ ztλ

α  are defined as those choices of MCα  

that result in the smallest error-value for ]ˆRe[ z
e

tλ
Δ  and ]ˆIm[ z

e
tλ

Δ  respectively for that 

data-set. I then examine the trend of α  for each Loss-Case data-set, represented in 

Fig. 5.3, as a function of frequency. This trend is shown in Fig. 5.4. The increasing 

value of α  for each of the Loss-Cases (Loss-Case 0: red stars, Loss-Case 1: blue 

stars, Loss-Case 2: green stars) as a function of frequency in Fig. 5.4 is expected as 

the cavity-losses are frequency dependent and monotonically increase with frequency. 

The small fluctuations in the data represented by the blue (Loss-Case 1) and green 

(Loss-Case 2) stars between 7.5 GHz and 15 GHz are attributed to the frequency-

dependent absorptive properties of the microwave absorber used to line the inside of 

the cavity walls for the Loss-Case 1 and Loss-Case 2 cavity setups. The error bars in 
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Fig. 5.4, are indicative of the estimated experimental error in determining α , as 

explained in chapter 4. 

 

 

Fig. 5.4: Variation in the cavity loss-parameter (α ) as a function of frequency for 

different cavity Loss-Cases (Loss-Case 0: red stars, Loss-Case 1: blue stars, Loss-

Case 2: green stars). Note the similar trend of the fluctuations in the data represented 

by the blue and green stars, which arises from the frequency-dependent absorptive 

properties of the microwave absorber used to create the cavity Loss-Case 1 and Loss-

Case 2 respectively. The error bars indicate the estimated experimental error in 

determining α  for each data-set. 
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5.2 Importance of The Off-Diagonal Radiation Elements in radZ
t

 

The “radiation impedance” approach to filter out the direct processes involved 

in a chaotic scattering experiment relies on the accuracy of the measured radiation 

impedance matrix. This section explains a key technical issue faced while 

experimentally measuring the radiation impedance matrix of the driving ports; 

specifically, the presence of non-zero, off-diagonal terms in the measured radiation 

impedance matrix. 

The conjecture that the statistical properties of real-world, physically 

realizable, wave-chaotic scattering systems can be modeled by an ensemble of large 

matrices with random elements (governed by certain system symmetries) is 

applicable only in the semi-classical or short wavelength limit (ray limit). For the 

purpose of this conjecture, in the presence of ports, a consistent definition of the short 

wavelength limit is that, when taking this limit, the size of the ports connecting to the 

cavity remain constant in units of wavelength. With this definition of the limit, the 

ratio of the distance between the ports to their size approaches infinity. Thus radZ
t

 

becomes diagonal and approaches a constant at short wavelength. 

The conjecture that Random Matrix Theory describes the scattering properties 

in a specific case assumes that, in the short wavelength limit, rays entering the cavity 

bounce many times before leaving (i.e., they experience the chaotic dynamics). With 

the above definition of the short wavelength limit of the ports, this would be the case 

since the fraction of power reflected back to a port via short (e.g., one or two bounce) 

paths approaches zero. At finite wavelength, however, it can be anticipated that there 

could be noticeable deviations from the Random Matrix Theory predictions and that 
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these would be associated with short ray paths. In my experimental determinations of 

radZ
t

, I have effectively eliminated the largest source of such non-universal behavior, 

namely, the short ray paths that go directly between ports 1 and 2. This is the case 

because these ray paths are already included in the experimental radZ
t

. 

In particular, lining the inner walls of the cavity with microwave absorber for 

the “Radiation Case” of the experiment, serves to essentially eliminate reflections off 

the side-walls, but plays no role in suppressing the direct-path interaction (cross-talk) 

between the two ports. This cross-talk is manifested primarily as non-zero, off-

diagonal terms in the measured radZ
t

 with enhanced frequency dependence relative to 

the one-port case.  
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Fig. 5.5: Magnitude of the elements of the measured radiation impedance matrix are 

shown as a function of frequency from 3 to 18 GHz for the setup in Fig.3.3. Inset: 

PDF of ]ˆIm[ ztλ  for the Loss Case 0 cavity in the frequency range 4-5 GHz, which is 

obtained by considering the full 2x2 radiation impedance matrix (stars) and by 

considering only the contribution of the diagonal elements of the radiation impedance 

matrix (circles). The blue solid line is the Random Matrix Theory numerical 

prediction for α =1 which is obtained from the variance of the data represented by the 

stars.  

 

Figure 5.5 shows the magnitudes of the elements of the radiation impedance 

matrix radZ
t

 for the two-port setup shown in Fig. 3.3. Frequency ranges where there is 
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significant cross-talk between the two ports are manifested as large values of 

|||| 1221 radrad ZZ = . Note the complicated structure of the measured elements of radZ
t

. 

To highlight the contribution of short ray paths, the inset of Fig. 5.5, shows 

the PDF of the eigenvalues of the normalized impedance for two scenarios of the 

Loss-Case 0 cavity in the 4-5 GHz frequency range.  The circles represent the PDF of 

]ˆIm[ ztλ  that is obtained by setting the off-diagonal terms of the measured radiation 

impedance matrix to zero. The solid stars however, represent the PDF of ]ˆIm[ ztλ  

which is obtained by considering all the elements of the measured radiation 

impedance matrix during the normalization process (Eq. (2.10)) to obtain zt . The red 

error bars are representative of the statistical error introduced from the binning of the 

data in the histograms indicated by the solid stars. I observe a clear discrepancy 

between the two curves and also note that the PDF represented by the circles does not 

peak at 0. Using the variance of the measured ]ˆIm[ ztλ  (stars) and the inverse 

polynomial function )( 2
]ˆIm[

1

ztλ
σα −Θ= , I obtain a loss parameter value of 

1.00.1 ±=α  for this frequency range. I use this value to generate the PDF of ]ˆIm[ ztλ  

using Random Matrix Monte Carlo simulation (see section 2.5). The resultant 

numerical prediction is shown as the solid blue line. Good agreement between the 

numerical Random Matrix Theory prediction and the experimentally determined PDF 

of ]ˆIm[ ztλ  by considering the full 2x2 radiation impedance matrix is thus observed. 

My choice of the 4-5 GHz range is motivated by the fact that in this range, the ratio of 

||/|| 2221 radrad ZZ  is the largest.  This result establishes the importance of off-
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diagonal terms in radZ
t

, and helps to validate the approach to removing short-path 

direct processes between the ports. 

5.3 Marginal and Joint PDFs of  st  eigenvalues 

In this section, I give my experimental results on the universal statistical 

fluctuations in the eigenvalues of st  [62]. Each 2x2 st  matrix yields two complex 

eigenvalues – which possess certain universal statistical properties in their marginal 

and joint PDFs.  

 

5.3.1 Statistical Independence of |ˆ| stλ  and 
stλ

φ ˆ  

Having obtained the ensemble of normalized st , I diagonalize st  using an 

eigenvalue decomposition, 1−= sss VVs ttt

tttt λ ;where, sVt

t
 is the 2x2 eigenvector matrix of 

st ; and st
t
λ  is a diagonal matrix containing the two complex eigenvalues of st . In the 

time-reversal symmetric, lossless limit, st  is unitary. This dictates that sVt

t
 be an 

orthogonal matrix and ⎥
⎦

⎤
⎢
⎣

⎡
=

]~[0
0]~[~

2

1

φ
φ

λ
jExp

jExp
st
t

. In the presence of loss, sVt

t
 is no 

longer orthogonal and st  now has complex, sub-unitary eigenvalues, i.e. 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

||0
0||

2

1
φ

φ

λ
λ

λ j

j

s e
e

t

t
, where 1|| 2,1 <λ . Reference [46]  (see Chapter 4) has 

shown that for a 1-port system, the magnitudes and phases of the normalized 1-port 

scattering coefficient s  are statistically independent. The independence was shown to 

be extremely robust and is unaffected by the presence of loss. For a two-port setup, as 
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in the experiments presented in this chapter, this would imply statistical independence 

of the magnitude and phases of the eigenvalues of st .  

 

Fig.5.6: (a) The density of eigenvalues of stλ̂  in the complex plane is shown for 

frequencies in the range 7.6 GHz to 8.1 GHz for Loss-Case 0. The gray-scale code 

white, light gray, dark gray, black are in ascending density order.  (b) Angular slices 

( o90 ) with the symbols (stars, hexagons, circles, squares) indicate regions where the 

PDF of |ˆ| stλ  of the data in (a) is calculated and shown. Observe that the four PDFs 

are nearly identical. The blue solid line is the numerical prediction from Random 

Matrix Theory using the loss parameter 2.1=α . The red error bars indicate the 

statistical binning error in the histograms. (c)  Experimental histogram 

approximations to the PDF of the eigenphase of st  (i.e.,
stλ

φ ˆ ). Two annular rings 
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defined by 35.0|ˆ|0 ≤≤ stλ  and 8.0|ˆ|35.0 ≤≤ stλ  of the data in (a) are taken and the 

histograms of the phase of the points within these regions are shown as the solid 

diamonds and hollow triangles respectively.  The red error bars indicate typical 

statistical binning errors for the data. The blue solid line is a uniform distribution 

( )2/(1)( πφ =P ). 

 

To test this hypothesis, the two complex eigenvalues of the st  ensemble are 

grouped into one list, which I shall refer to as “ stλ̂ ”. I observe that grouping the two 

eigenvalues together as opposed to randomly choosing one of the two eigenvalues 

does not change the statistical properties of the results that follow. Figure 5.6(a) 

shows a plot in the complex plane of the eigenvalue density for a representative set of 

measured st  ranging between 7.6 to 8.1 GHz where the loss-parameter is roughly 

constant. The gray-scale level at any point in Fig. 5.6(a) indicates the number of 

points for ]}ˆIm[],ˆ{Re[ ss tt λλ  that lies within a local rectangular region of size 0.01 x 

0.01. Next, angular slices which subtend a polar-angle of 2/π  are taken and 

histogram approximations to the PDF of |ˆ| stλ  of the points lying inside each of the 

four slices are computed. This is shown by the stars, hexagons, circles and squares in 

Fig. 5.6(b). It can be observed that the PDF approximations are essentially identical 

and independent of the angular-slice. By grouping the real part of the eigenvalues of 

zt  in to one list and computing its variance (i.e. 2
]ˆRe[ ztλ

σ ), I solve the inverse 

polynomial function )( 2
]ˆRe[

1

ztλσα −Θ=  to yield an estimate of 1.02.1 ±=α  for this 

data set. The blue solid line shows the numerical Random Matrix Theory prediction 
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(see section 2.5) which is computed using a single value of 2.1=α . The red error 

bars in Fig. 5.6(b) which are representative of the typical statistical binning error of 

the experimental histograms show that the data agrees well with the numerical 

Random Matrix Theory PDF.  

In Fig. 5.6(c), the histogram approximations of the phase of the points lying 

within two-annular rings defined by 35.0|ˆ|0 ≤≤ stλ (solid diamonds) and 

8.0|ˆ|35.0 ≤≤ stλ (hollow triangles) are shown. A nearly uniform distribution is 

obtained for both cases indicating that the PDF of the phase of stλ̂  is independent of 

the radius of the annular ring. Also shown in blue is the uniform distribution with 

)2/(1)( πφ =P . Figure 5.6 thus supports the hypothesis that the magnitude and phase 

of the eigenvalues of st  are statistically independent of each other and that the eigen-

phase of st  is uniformly distributed from 0  to π2 [62]. 

 

5.3.2 Joint PDF of st  eigenphases 

Sub-section 5.3.1 has established the uniform distribution of the marginal PDF of the 

eigenphases of st . Here I explore the statistical inter-relationships between the two 

eigenphases of st  by looking at their joint PDFs i.e., ),( 21 φφP . In the lossless limit 

the eigenvalues of st  are of unit modulus and their marginal distribution is uniform in 

phase along the unit-circle. Reference [23] has shown that the joint PDF of the 

eigenphases 1φ  and 2φ , shows a clear anti-correlation, i.e. βφφφφ ||),( 21
21

jj eeP −∝ , 

where )2(1=β  for a time-reversal(broken) GOE(GUE) system. In the lossless GOE 

case this anti-correlation is 216.021 −>≅< φφ , where πφπ ≤≤− 2,1  [26]. As losses 
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are introduced, the eigenvalues of st  are no longer confined to move along the unit-

circle; but rather are distributed inside the unit circle in a manner dependent upon the 

loss in the system (as was shown in Fig. 5.6(a)).  The sub-unitary modulus of the 

eigenvalues thus presents an extra degree of freedom for eigenvalue avoidance, hence 

a reduced anti-correlation of the eigenphases as the losses increase can be expected. 

To my knowledge, there exists no analytic formula for the evolution of the joint PDF 

of the eigenphases of st  as a function of loss. In the following paragraphs, I thus 

compare my experimental results for the joint  PDF of the eigenphases of st  with  

numerical computations of results from Random Matrix Theory. 

 In order to make comparisons of the data with numerical computations from 

Random Matrix Theory, I transform the eigenphases  1φ  and 2φ  to 1κ  and 2κ , as 

follows, 

22

12211 )(2
φκ

φφππφφκ
=

−+−−= H
                                (5.2) 

where )(xH  is the Heaviside step function ( 0)( =xH  for 0<x ; 1)( =xH  for 0>x ). 

This transformation of variables has the effect of making 1κ  and 2κ statistically 

independent, with all the correlation information between 1φ  and 2φ  being contained 

in 1κ ; and 2κ  being uniformly distributed (as shown in Fig. 5.6(c)). In the lossless 

case, it can be easily deduced from βφφφφ ||),( 21
21

jj eeP −∝ , that 

4/)2/()( 11 κκ CosP =  for 1=β . 
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Fig. 5.7: (a) The joint PDF ( ),( 21 κκP ) of the transformed eigenphases 1κ  and 2κ  for 

Loss Case 0 (triangles: left), Loss Case 1 (circles: center) and Loss Case 2 (stars: 

right) in the frequency range of 10.4-11.7 GHz. The color-scale levels blue, green, 

yellow and red are in ascending density order. (b) Marginal PDFs for 1κ  (Loss Case 0 

(triangles: left), Loss Case 1 (circles: center) and Loss Case 2 (stars: right)) of the 

data shown in the top row. The dashed red line is the lossless prediction 

4/)2/()( 11 κκ CosP = . The blue solid lines are the numerical Random Matrix Theory 

prediction for )( 1κP  with α =1.6 (left); 5.7 (center) and 14.5 (right).  

 

The top row of Fig. 5.7 shows the density plots of 1κ  and 2κ  for the three 

different loss-cases (Loss-Case 0: triangles, Loss-Case 1: circles, Loss-Case 2: stars) 

in the frequency range of 10.4-11.7 GHz. This corresponds to =α 1.06.1 ± , 1.07.5 ±  
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and 1.05.14 ± respectively. For the data set represented by the triangles, the value of 

α  was determined by computing the variance of the real part of the grouped 

eigenvalues of zt (i.e. 2
]ˆRe[ ztλ

σ ) and solving the inverse polynomial function 

)( 2
]ˆRe[

1

ztλσα −Θ= . For the data sets represented by the circles and stars, the value of α  

was determined by computing the variance of the real part of the grouped eigenvalues 

of zt  and Eq. (5.1). As the plots indicate, the statistical variation is entirely contained 

in the 1κ  direction, with 2κ being nearly uniformly distributed. The color-scale level 

on the plots indicates the number of points for { 1κ , 2κ } which lie within a local 

rectangular region of size 0.01 x 0.01. The corresponding anti-correlation of the 

eigenphases 15.0,16.0,17.0, 21 −−−>≅< φφ ( πφπ ≤≤− 2,1 ) for the triangles, circles 

and stars respectively. 

 The bottom row of Fig. 5.7 shows histogram approximations to the Marginal 

PDFs of 1κ  for all three cases of loss (Loss-Case 0: triangles, Loss-Case 1: circles, 

Loss-Case 2: stars) for the data shown in the top row. The blue solid line is the 

numerical Random Matrix Theory computation for )( 1κP  which is based upon the 

loss parameters stated above. The red dashed-line is the predicted PDF of 1κ  in the 

lossless case. The red error-bars indicate the typical statistical binning error for the 

experimental PDF histograms. The agreement between the experimentally determined 

)( 1κP  (symbols) and the numerically generated )( 1κP (blue trace) is good and well 

within the error-estimates. I observe that as the losses increase, the histograms for 

)( 1κP  tends to grow progressively wider and develop smooth tails - which results in 

a reduced anti-correlation between 1φ  and 2φ , as expected [62]. 
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5.3.3 Joint PDF of eigenvalues of sstt † 

I now consider the joint PDF of the eigenvalues of sstt † , where † denotes the 

conjugate transpose. Since sstt † is Hermitian, its eigenvalues are purely real. The 

matrix sstt † is of significant interest in the quantum-transport community as it 

determines the conductance fluctuations of ballistic quantum-dots in the presence of 

dephasing/loss. Owing to the analogy between the time-independent Schrödinger 

equation and the two-dimensional Helmholtz equation, the microwave billiard 

experiment presents itself as an ideal platform to test statistical theories for these 

quantum fluctuations without the complicating effects of thermal smearing [63] and 

Coulomb interactions, as discussed in Ref. [64] (also see Chapter 6).  

Models have been introduced to quantify the loss of quantum phase coherence 

(dephasing) of transport electrons in quantum dots [65, 66, 67, 68]. These models 

generally utilize a fictitious lead attached to the dot that has a number of channels φN  

each of which contains a tunnel-barrier with transmission probability φΓ , for the 

electrons that enter the channel from the dot. Electrons that enter one of the channels 

of this lead are re-injected into the dot with a phase that is uncorrelated with their 

initial phase, and there is no net current through the fictitious lead. An alternative 

model of electron transport employs a uniform imaginary term in the electron 

potential [69, 70], leading to loss of probability density with time, similar to the loss 

of microwave energy in a cavity due to uniformly distributed losses in the walls and 

lids. As far as the conductance is concerned, it was shown that these two models are 

equivalent in the limit when the number of channels in the dephasing lead ∞→φN  
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and 0→Γφ , with the product φφγ Γ= N  remaining finite [59, 66, 71]. In this case, 

the dephasing parameter γ  is equivalent to a loss parameter describing the strength of 

uniformly distributed losses in the system. Other models have been proposed that 

consider parasitic channels [66, 72] or an “absorbing patch” or “absorbing mirror” 

[73] to describe losses in a microwave cavity. Here I examine the predictions of 

Brouwer and Beenakker using the dephasing lead model in the limit mentioned 

above. In this case the dephasing parameter γ  is treated as a loss-parameter 

describing fairly uniformly distributed losses in the microwave cavity, and is found to 

be proportional to the loss-parameter α . 

 Reference [59] has shown that the eigenvalues of sstt † can be denoted as 

11 T−  and 21 T−  (where 1T  and 2T  determine the absorption strength of this fictitious 

port) with the statistical properties of 1T  and 2T  dependent on the parameter γ . When 

0=γ , 1T  and 2T  equal zero and st  is unitary. As γ  increases, 1T  and 2T  migrate 

towards 1.  Equation 17(a) (Eq.(5.3) below) and Eq.17(b) of Ref. [59] are exact 

analytic expressions for the joint PDF of 1T  and 2T  in terms of γ  for both the GOE 

and GUE cases respectively. At all values of γ , the analytic expression for 

);,( 21 γTTP shows strong anti-correlation between 1T  and 2T  [59], 
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For my experiment, once the ensemble of st  has been obtained,  1T  and 2T  

can be easily determined by computing the eigenvalues of sstt †. In Fig. 5.8, contour 
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density plots of ),( 21 TTP is shown for the Loss-Case 0 (Fig. 5.8(a) : 3.2-4.2 GHz) and 

Loss Case 0 (Fig. 5.8(b): 13.5-14.5 GHz). This corresponds to α  values of 1.00.1 ±  

for Fig. 5.8(a) and 1.09.2 ±  for Fig. 5.8 (b). These values of α  are determined from 

estimating the variance of the real part of the grouped eigenvalues of zt (i.e. 2
]ˆRe[ ztλ

σ ) 

and solving the inverse polynomial function )( 2
]ˆRe[

1

ztλ
σα −Θ=  for both data sets. The 

color-scale level indicates the number of points that lie in a local rectangular region of 

size 0.01 x 0.01 for Fig. 5.8 (a) and 0.005 x 0.005 for Fig.  5.8 (b) (note the change in 

scales for the plots). I observe that as losses increase the  cluster of 1T  and 2T  values 

which are centered around ~0.75 for Fig. 5.8 (a) migrates towards values of 1T  and 

2T  approaching 1 (Fig. 5.8 (b)). I also observe a strong anti-correlation in 

),( 21 TTP for 21 TT = . This anti-correlation is manifested in all the data measured at 

varying degrees of loss from α =0.9 to 25 [62]. 
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Fig.5.8: The experimental joint PDF of 1T  and 2T  (i.e., ),( 21 TTP ) for Loss-Case 0: 

3.2-4.2 GHz ( 0.1=α ) (a) and 13.5-14.5 GHz ( 9.2=α ) (b). The color-scale levels 

blue, green, yellow and red are in ascending density order. The black contours are 

theoretical predictions for );,( 21 γTTP obtained from Eq. 5.3 for 4.12=γ  (a) and 

5.36=γ (b).  

  

To estimate the value of γ  for my experimental data-sets, I use an analytic 

expression for 〉〈 1T  (or equivalently 〉〈 2T  since 1T  and 2T  are symmetric)  in terms of 

γ  from Eq. (4.7) [59] which was derived by James Hart for the TRS case,  

)))2/()2))2(2((2

)())2(22(4)1(4((
4
1

2/

21

γξγγ

γξγγγ
γ

γγ

γγγγ

−−−+−

−+−−+−−=〉〈=〉〈=〉〈 −

ee

eeeeTTT              (5.4)  

where ∫
∞

−

−

−=
z

t

dt
t

ez)(ξ  is the exponential integral function. Figure 5.9 shows the 

relation between 〉〈T  and γ . 
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Fig. 5.9: Relation between 〉〈T  and γ  as described in Eq. (5.4). Inset: Relation 

between 〉〈T  and γ  as described in Eq. (5.4) shown on a semi-log plot. 

 

By determining the value of 〉〈T  from the measured data set, Eq.(5.4) then 

uniquely determines the corresponding value of γ ( 〉〈≡ Tγ ). This approach yields 

values of 1.04.12 ±=〉〈Tγ  and 1.05.36 ±=〉〈Tγ   for the data in Fig. 5.8(a) and Fig. 

5.8(b), respectively. Using these values of 〉〈Tγ , I plot the analytic contour curves 

defined by Eq. (5.3) for the two loss cases, shown as the solid black lines in Fig. 5.8. 

The theoretical curves reflect the same number of contour levels shown in the data.  I 
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observe relatively good agreement between the theoretical prediction of Ref. [59] and 

the experimental data. This agreement between the experimental data and the 

theoretical prediction is also observed to extend over other loss-cases and frequency 

ranges.  Comparing the value of α  from each experimental data set with the 

corresponding value of 〉〈Tγ , I empirically determine a linear relation between α  and 

γ , i.e αγ )1.05.12( ±=  using 70 points for 〉〈Tγ  between  about 11 and 300 [62, 64] 

(also see chapter 6).  

 
 

5.4 Summary of Chapter 5 and Conclusions 

The results discussed in this chapter are meant to provide conclusive 

experimental evidence in support of the “radiation impedance” normalization process 

introduced in Ref. [26] for multiple-port, wave-chaotic cavities. The close agreement 

between the experimentally determined PDFs and those generated numerically from 

random matrix Monte Carlo simulations, support the use of Random Matrix Theory 

to model statistical aspects of real-world wave-chaotic systems. This chapter is a 

natural two-port extension of the one-port experimental results of Chapter 4 [45, 46].  

The extension to two-ports makes these results of much broader appeal to other fields 

of physics and engineering where wave-transport through complex, disordered media 

is of interest. 

 In this chapter, I have shown that the full 2x2 radiation impedance matrix of 

the two-driving ports can accurately quantify the non-ideal and system-specific 

coupling details between the cavity and the ports as well as the cross-talk between 
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ports, over any frequency range. Hence, given the experimentally-measured, non-

ideally coupled cavity data, this normalization procedure allows the retrieval of the 

universal statistical fluctuations of wave-chaotic systems which are found only in the 

limit of perfect coupling. I have experimentally tested the evolution of these universal 

fluctuations traversing from the regime of intermediate to high loss and for different 

coupling geometries. I find good agreement between the PDFs obtained 

experimentally to those generated numerically from Random Matrix Theory. Of 

particular significance is the joint PDF of the eigenphases of st , and the eigenvalues 

of  sstt † which lead to the universal conductance fluctuations statistics of quantum-

transport systems. The results are not restricted to microwave-billiard experiments but 

also apply to other allied fields, such as quantum-optics, acoustics and 

electromagnetic compatibility. 
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Chapter 6:  Experimental Test of Universal Conductance 
Fluctuations By Means Of Wave-Chaotic Microwave Cavities 

 

Much attention has been focused on the problem of mesoscopic transport 

through a quantum dot in which a two-dimensional electron gas system contained 

within an arbitrarily-shaped potential-well boundary is connected to two electron 

reservoirs through leads– the source ( s )  and drain ( d ). Recently it has been possible 

to fabricate quantum dots with low impurity content where the elastic mean free paths 

of the enclosed electrons are typically much larger than the physical size of the dot 

[27]. Electron transport through such “ballistic dots” is governed by elastic collisions 

off the enclosing potential-well boundaries. It has been observed that the terminal 

conductance of such dots, defined as )/(ˆ
dss VVIG −=  where sI  is the source current 

flowing into the dot and )( ds VV −  is the potential difference between these two leads, 

exhibits strong, reproducible fluctuations on the order of the quantum of conductance 

( heG /2
0 = ) [63, 74, 75]. These fluctuations arise from quantum-interference effects 

due to the phase-coherent electron transport within such dots and have been explained 

using the hypothesis that the fluctuations are governed by Random Matrix Theory 

[23]. Similar universal conductance fluctuations (UCF) have also been observed in 

other systems such as quasi-one-dimensional metal wires [75, 76].  
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Fig. 6.1: Schematic representation of a ballistic quantum dot showing the “fictitious 

voltage probe” dephasing model. Electrons enter the dot through the source-lead and 

leave the dot through the drain-lead. sV  and sI  ( dV  and dI ) denote the potential and 

the current at the source(drain) lead respectively. The electron transport within the 

interior of the dot is chaotic due to the irregularly shaped potential-well boundaries of 

the dot. The phase coherent transport is represented as the blue arrows while the red 

arrows indicate the loss of phase-coherence (dephasing) transport. The dephasing 

process is modeled as a fictitious voltage probe φ  with φN  propagating modes and 

φΓ  being the transmission probability for the electrons entering each fictitious mode 

from the interior of the dot. The electrons that enter the fictitious probe are then re-

injected into the interior of the dot with an arbitrary phase, thereby giving rise to 

phase-incoherent transport (indicated by the curved arrow). 
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In a quantum dot, this phase coherence is partly lost by opening the system to 

the outside world during the process of measurement of the conductance. Quantum 

phase decoherence (dephasing) can also be induced due to the presence of impurities 

within the dot, thermal fluctuations, or electron-electron interactions, all of which 

lead to more classical properties for electron transport [77]. Significant theoretical 

and experimental effort has been devoted to studying the dephasing of the transport 

electrons in quantum dots [63, 65, 67].  One class of theoretical dephasing models 

utilizes a “fictitious voltage probe (φ )” attached to the dot that has a number of 

channels (modes) φN , each of which contains a tunnel-barrier with transmission 

probability φΓ  for the electrons that enter the channel from the dot (Fig. 6.1). 

Electrons that enter one of the channels of this fictitious probe are re-injected into the 

dot with a phase that is uncorrelated with their initial phase, and there is no net 

current through the fictitious probe. An alternative model of electron transport 

employs a uniform imaginary term in the electron potential [69, 70], leading to loss of 

probability density with time. It was shown that [59], as far as the conductance is 

concerned, these two models yield equivalent predictions in the limit when the 

number of channels in the dephasing lead ∞→φN  and 0→Γφ , with the product 

φφγ Γ= N  remaining finite (“the locally weak absorbing limit”) [71]. A similar idea 

exists for describing ohmic losses in the microwave cavity in terms of non-ideally 

coupled “parasitic channels” [66]. Since the ohmic losses in the microwave cavity are 

to good approximation uniformly distributed, the equivalence of the imaginary 

potential and voltage leads models mentioned above can be used to relate the de-

phasing parameter γ   employed by electron-transport theory [59] to the loss 
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parameter of the microwave cavity ( )/( 22 Qkk nΔ=α )  which was introduced in 

Chapter 2. Using the prescription outlined by ref. [59] it is possible to determine the 

analog of conductance for the microwave cavity and make detailed comparisons of 

data to theory.  

For the results presented in this chapter, I make use of an electromagnetic 

analog of a quantum dot in the form of a two-dimensional chaotic microwave cavity. 

In the case of a cavity thin in one dimension, Maxwell’s equations reduce to a two-

dimensional scalar Helmholtz equation. Owing to the analogy between the scalar 

Helmholtz equation and the Schrödinger equation [13], the chaotic microwave cavity 

is an ideal surrogate for a ballistic quantum dot without the complicating effects of 

thermal fluctuations [63], Coulomb interactions, or impurities. The experimental 

setup of the microwave cavity from which the results discussed in this chapter were 

obtained has been presented in section 3.2. The microwave cavity is driven by two 

ports (Port 1 and Port 2) - see Fig.3.3, both of which support a single propagating 

mode and are analogous to the source and drain leads in the quantum dot. The 

microwave analog also permits detailed measurements of the eigenvalues [52, 78, 

79], eigenfunctions [41, 55], scattering and reaction matrices [35, 36, 39, 45, 46, 58, 

62, 64], in a system where every detail of the potential and the port-coupling can be 

controlled  (see chapters 4 and 5).  

 Adopting a variant of the Landaeur-Buttiker formalism, the normalized 

conductance ( oGGG 2ˆ= ) can be expressed in terms of the scattering matrix 
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where the first term describes the direct (phase coherent) transport through the 

microwave-cavity and  corresponds to the conductance of the quantum-dot due to the 

electrons that did not enter the fictitious voltage probe. The second term is a 

correction that describes the conductance due to the electrons that are re-injected into 

the dot from the phase-breaking fictitious voltage-probe, thereby ensuring particle 

conservation in the voltage-probe model [59].  

 In the time-reversal symmetric case with single-mode leads, Ref. [59] has 

shown that as γ  increases the probability density function of G  (i.e. );( γGP ) 

becomes more and more sharply peaked around the classical value of 2/1=G . In the 

limit of large γ , an asymptotic analytic expression  for );( γGP is predicted to be 

[59], 

||)||1(
2
1);( xexxGP −−+= γγ   with )2/1(2 −= Gx γ .                  (6.2) 

This yields a large-γ  asymptotic expression for the mean and variance of G  which 

are predicted to be [59], 

)(
2
1

2
1 2−+−>=< γ

γ
OG ,                                                  (6.3), 
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4

3)var( 3
2

−+= γ
γ

OG .                                                 (6.4). 
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This chapter is divided into the following sections. In section 6.1, I derive an 

empirical relation between the dephasing parameter γ  and the cavity loss-parameter 

α  based on my experimental results. Section 6.2 then explores the PDFs of the 

experimentally derived universal conductance fluctuations for increasing values of 

γ and compares them with predictions from [59] and Random Matrix Theory. In 

section 6.3, I experimentally test the predictions from [59] for the mean and variance 

of these universal conductance fluctuation PDFs as a function of γ . Finally, section 

6.4 concludes the chapter with a summary of my experimental findings and its 

implications. 

6.1 Relation between the dephasing parameter(γ ) and the cavity loss-parameter(α )  

To report my experimental results, I begin by examining the relationship 

between the estimated dephasing parameter 〉〈Tγ  (see section 5.3.3) and the estimated 

cavity loss parameter α  which is determined as per the procedure explained in 

chapter 5. By employing a sliding frequency window 1 GHz wide that runs over each 

of the three Loss-Cases - 0, 1, 2 from 3 to 18 GHz, I estimate the value of 〉〈Tγ  and 

the corresponding value of α  for each window. The comparison is shown as the 

black circles in Fig. 6.2. A linear fit yields the empirical expression 

αγ )1.05.12( ±=〉〈T  for nearly 70 points with values for 〉〈Tγ  ranging from about 11 to 

about 300. By comparing the Poynting theorem for the electromagnetic cavity with 

the continuity equation for the probability density in the quantum system [80, 

Appendix D], I find παγ 4= , with ...56.124 ≅π .  This result can be considered an 

empirical confirmation of the proposed equivalence of the imaginary potential 
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(uniform volume losses) and de-phasing lead models in the limit considered in [59]. 

The 1 GHz width of my sliding window was chosen to be large enough to overcome 

the effects of short-ray paths (which are not removed by only configuration averaging 

[25, 26, 62]), but at the same time small enough that the cavity losses can be assumed 

to be approximately constant over this frequency range [64].  

 

 

Fig. 6.2: The relation between the experimentally determined 〉〈Tγ  and α  is shown as 

the circles. A linear fit  (red line) yields the empirical expression αγ )1.05.12( ±=〉〈T . 
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6.2 Uncovering the Universal Conductance Fluctuations PDFs 

In Fig. 6.3, the experimentally obtained histogram approximation (symbols) to 

the PDF of the normalized conductance ( );( γGP ) derived from the normalized 

scattering matrix st  and Eq. (6.1) is shown for four cavity data sets - dry-ice case : 

4.1-4.7 GHz (hexagons) with 1.09.0 ±=α  and 1.02.11 ±=〉〈Tγ , Loss Case 0 : 16.8-

17.6 GHz (stars) with 1.08.2 ±=α  and 1.01.35 ±=〉〈Tγ , Loss Case 1 : 8.3-9.5 GHz 

(circles) with 1.06.6 ±=α and 1.02.82 ±=〉〈Tγ , and Loss Case 2 : 16.8-17.6 GHz 

(squares) with 1.07.21 ±=α  and 1.01.272 ±=〉〈Tγ  . The colored solid lines 

(magenta, black, green, red) are the asymptotic analytic expression for ),( γGP  (Eq. 

(6.2)) with values of γ  that correspond to the estimated 〉〈Tγ  values obtained from the 

data-sets represented by the hexagons, stars, circles and squares respectively.  The 

purple-colored solid line in Fig. 6.3(a) is a random matrix Monte-Carlo simulation 

(see section 2.5) for values of 2.11=〉〈Tγ  corresponding to the data set in Fig. 6.3(a). 

The red error bars (roughly the size of the symbols) in Fig. 6.3 which are 

representative of the typical statistical binning error of the experimental histograms 

show that the agreement between the data (shown by the symbols) and the theoretical 

predictions (shown by the solid curves) improves as the value of 〉〈Tγ  increases. This 

is to be expected as Eq. (6.2) is valid only in the high dephasing limit ( 1>>γ ). 

Similar good agreement between the data and Eq. (6.2) is obtained for all of the 

nearly 40 data sets that I examined in which the frequency ranges and cavity loss 

cases resulted in an estimate of the 〉〈Tγ  parameter to be greater than about 18 [64]. 
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Fig. 6.3: (a) PDFs for the normalized conductance );( γGP  obtained from a chaotic 

cavity for dry-ice case : 4.1-4.7 GHz (hexagons) ( 1.09.0 ±=α ; 1.02.11 ±=〉〈Tγ ). The 

magenta solid line is the analytic prediction Eq.(6.2) for 2.11=γ . The purple solid 

line is numerically generated from Random Matrix Theory for 2.11=γ . (b) PDFs for 

the normalized conductance );( γGP  for Loss Case 0 : 16.8-17.6 GHz (stars) 

( 1.08.2 ±=α ; 1.01.35 ±=〉〈Tγ ); Loss Case 1 : 8.3-9.5 GHz (circles) 

( 1.06.6 ±=α ; 1.02.82 ±=〉〈Tγ ) and Loss Case 2 : 16.8-17.6 GHz (squares) 

( 1.07.21 ±=α ; 1.01.272 ±=〉〈Tγ ). The black, green and red solid lines are analytic 

predictions Eq.(6.2) for 1.35=γ , 2.82=γ  and 1.272=γ . The red error bars (roughly 

the size of the symbols) are representative of the typical statistical binning error of the 

experimental histograms 

 

In order to bring out the universal scaling behavior of the );( γGP  

distributions (Eqs. (6.2)) and also to test that these distributions remain strictly non-
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Gaussian for increasing values of γ  (as predicted by [59]), I rescale the 

);( γGP distributions by plotting ]);([10 γ
γGPLog  versus )2/1(2 −= Gx γ  in Fig. 6.4 

for three representative data sets with 〉〈Tγ  ranging from about 56 to  about 220. I 

observe that the three data sets roughly fall on top of each other. The solid blue curve 

is the theoretical curve, Eq.(6.2) which is in good agreement with the data.  Some 

deviation of the symbols from the theoretical curve near 2+≅x  can be observed. 

This is attributed to the lack of adequate statistics in the tails of the experimentally 

determined histogram approximations to the probability density functions of the 

conductance. Overall, for values of x  ranging from 4−  to 2+ , the agreement is 

qualitatively good and applies over other data sets where 〉〈Tγ  ranges from about 18 to 

330.  The asymmetric (non-parabolic) nature of the experimental data (symbols) 

confirms that the experimentally obtained );( γGP  remains strictly non-Gaussian and 

negatively skewed even for large values of γ , as predicted by [59] (see [64]). 
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Fig.6.4: Universal scaling behavior of the conductance distributions is shown. The 

vertical-axis represents ]),([10 γ
γGPLog  with the corresponding )2/1(2 −= Gx γ  

along the horizontal-axis for three representative data sets consisting of Loss Case 1 : 

5.01-6.08 GHz (stars) ( 1.05.4 ±=α ; 1.06.56 ±=〉〈Tγ ); Loss Case 1 : 13.6-14.6 GHz 

(circles) ( 1.03.7 ±=α ; 1.06.91 ±=〉〈Tγ ) and Loss Case 2 : 13.6-14.6 GHz (squares) 

( 1.07.17 ±=α ; 1.05.220 ±=〉〈Tγ ).The solid blue curve is the theoretical curve, 

Eq.(6.2). 
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6.3 Validating Theoretical Predictions for the Mean and Variance of the UCF PDFs 

In Fig. 6.5, I again employ the sliding frequency window of width 1 GHz to 

test the asymptotic (γ >> 1) relations for the mean >< G  (Eq. 6.3) and variance 

)var(G  (Eq. 6.4) of );( γGP  as a function of dephasing (loss) parameter γ . As 

before, I determine the value of 〉〈Tγ  for each frequency window data set that runs 

from 3 to 18 GHz for the three Loss Cases. I then determine the corresponding values 

of the mean and variance of the corresponding conductance distributions );( γGP  of 

each frequency window.  In the inset of Fig. 6.5, each star indicates the 

experimentally estimated mean value of G (i.e., >< G ) for the corresponding value of 

〉〈Tγ . The standard deviation about the experimentally determined mean is of order 

510− . I observe that as 〉〈Tγ  increases, the stars asymptotically approach the classical 

value of 2/1>=< G . The solid black curve represents the leading terms in Eq. (6.3).  

The circles in Fig. 6.5 show a similar analysis for the variance ( )var(G ) of the 

normalized conductance distributions );( γGP  as a function of γ .  The solid black 

curve represents the leading term in Eq. (6.4). It can be observed that the circles 

closely follow the functional approximation for the theoretical curve (Eq. (6.4)) for 

the range of 〉〈Tγ  values from about 18 to about 330, with no adjustable parameters 

[64].  
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Fig.6.5: Evolution of the variance of the experimentally determined );( γGP  

distributions (i.e., )var(G ) for increasing values of 〉〈Tγ  plotted on a logarithmic scale. 

The solid black line represents the leading terms of the prediction in Eq.(6.4). Inset: 

Evolution of the mean of the experimentally determined );( γGP  distributions 

(i.e., 〉〈G ) for increasing values of 〉〈Tγ . The solid black line represents the leading 

terms of the prediction in Eq.(6.3). These are zero-parameter fits. 
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6.4 Summary of Chapter 6 and Conclusions 

The results discussed in this chapter provide experimental evidence in support 

of the theoretical arguments proposed by [59] and the hypothesis that Random Matrix 

Theory provides a good description of the conductance fluctuation statistics in a 

ballistic chaotic quantum-dot in the presence of dephasing. I have shown that in the 

“locally weak absorbing limit” as discussed in [59], the dephasing parameter can be 

related to the cavity loss parameter. I have derived an empirical linear relation 

between γ  and the cavity loss-parameter α  based on my experimental data. The 

finite conductivity of the metallic walls of the cavity translates to a minimum-possible 

experimentally accessible γ -value of about 11 for my experiments (at least for the 

present cavity geometry and temperatures of -78.5oC and above). I have also shown 

that my experimentally determined conductance distributions and the asymptotic 

analytic functional forms for the PDF of G ( )(GP ), its mean value ( >< G ) and 

variance ( )var(G ) are in good agreement over a broad range of large γ  values.  

These results serve to establish the microwave analog as a method to study detailed 

theories of non-interacting quantum transport and de-coherence in quantum coherent 

systems.   
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Chapter 7: Characterization of Impedance and Scattering Matrix 
Fluctuations of Wave-Chaotic Systems 

 
Statistical variations of the elements of the cavity impedance matrix ( Z

t
) and the 

cavity scattering matrix ( S
t

) due to small random variations in the scattering are of 

great interest. These statistics are found to be influenced by two fundamental aspects, 

(i) universal aspects as described by Random Matrix Theory, and (ii) non-universal, 

system-specific aspects that are dependent on the details of the coupling of input 

channels (e.g., transmission lines, waveguides,etc) to the scatterer. In this chapter, the 

quantity 
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Z ZVarZVar

ZVar
R =  , ji ≠                                           (7.1) 

is considered. Here ][AVar , the variance of the complex scalar A  is defined as the 

sum of ]][Re[AVar and ]][Im[AVar .The variance is taken over the ensemble of 

configurations of the system. Reference [81] has shown that this result is of the form, 
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where  g(s) is given by )/](2/1)'()'([)()(
0

2 dsdfsfsdsfsg
s

∫ −−= , with 

)/()sin()( sssf ππ= ; and α  is the cavity loss-parameter introduced in chapter 2.The 

terms TRS  and BTRS  stands for cavities with Time-Reversal Symmetry or Broken 

Time-Reversal Symmetry respectively. Reference [81] has shown that the quantity 
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ZR  is universal in that its value depends only upon the value of the loss-parameter 

(α ). In specific, the asymptotic values for ZR  is given as, 
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and, 
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The nature of  ZR  as a function of α  is shown in Fig. 7.1.  

 

 

Fig. 7.1: ZR  vs the loss parameter α , as specified in Eq. (7.2). Figure reproduced 

from [81]. 
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 A ratio similar to Eq.(7.1) can also be considered for the scattering matrix of 

the wave-chaotic cavity ( S
t

), 

][][

][

jjii

ij
S SVarSVar

SVar
R =  , ji ≠ .                                            (7.5) 

 In contrast to Eq.(7.2), [81] has shown that SR  in general depends upon both 

the coupling to the cavity and the loss parameter α . This non-universal aspect 

(dependence on the coupling) of SR  is shown in Fig.7.2. The quantities 

0/]Re[ ZZ radr =γ  and 0/]Im[ ZZ radx =γ  are scalar quantities that determine the 

degree of coupling between the port and the cavity. In this figure both ports are 

symmetrically coupled to the cavity. Perfect coupling implies 1=rγ  and 0=xγ  as 

was mentioned in chapter 2. Figure 7.2(a) shows SR  vs rγ  for 0=xγ  in a loss-less 

case, with 0=α  (circles), and in a high loss case, 5=α  (thick black line). While in 

Fig. 7.2(b), SR  vs xγ  for 1=rγ  in a loss-less case, with 0=α  (circles), and in a high 

loss case, 5=α  (thick black line) is shown. Note the dependence of SR  on rγ and 

xγ in the loss-less case. However, in the limit of high loss, SR  also becomes universal 

[81] i.e., independent of coupling, 
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Hence from Eq.(7.3) and Eq.(7.6), for 1>>α , ZS RR = .  
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Fig. 7.2: (a) SR  vs rγ  for 0=xγ  in a loss-less case ( 0=α ) and in a high loss case 

( 5=α ). (b) SR  vs xγ  for 1=rγ  in a loss-less case ( 0=α ) and in a high loss case 

( 5=α ). The quantities 0/]Re[ ZZ radr =γ  and 0/]Im[ ZZradx =γ  are scalar quantities 

that determine the degree of coupling between the port and the cavity. Reproduced 

from [81]. 

 

Based upon their experiments on a mode-stirred electromagnetic cavity, 

Fiachetti and Michelsen [82] have recently conjectured the universality of Eq.(7.6) in 

the TRS  case. More generally, Eq.(7.6) follows from classic results of Hauser and 

Feshbach describing fluctuations in the cross-section of inelastic neutron scattering 

[83], and this result has been obtained by Friedman and Mello [84] using the concept 

of maximum entropy, and by Agassi et.al. using a random-matrix model [31]. The 

point to be reiterated is that the universal result for SR  i.e., Eq.(7.6), holds only for 

1>>α , while the universal result for ZR  (Eq.(7.2)) holds for arbitrary α  [81].  

 In this chapter my objective is to experimentally test the prediction of [81] for 

ZR  and SR  as a function of the cavity loss-parameter (α ). In section 7.1, I provide 
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experimental results testing the theoretical predictions for the statistical fluctuations 

in the variance of the S
t

 and Z
t

elements, in the limit of large damping. Then, in 

Section 7.2, I conclude with a summary of my results and its implications. 

7.1 Experimental Results for ZR  and SR  

 
The experimental setup of the microwave cavity for the results to follow has 

been explained in section 3.2, but with the metallic perturbations of the type used in 

section 3.1. To eliminate the effect on the average of short ray orbits returning to the 

antenna (these lead to rapidly frequency-dependent systematic deviations of the 

average from the ensemble average, as discussed in [25]) I perform frequency 

averaging over a sliding window of width 300MHz. I denote such sliding averages of 

impedance and scattering variance ratios by ZR  and SR  respectively. The inset in 

Fig. 7.3 shows ZR (solid line) over a frequency range 4-12 GHz. Denoting the 

average of ZR over the entire range, 4-12 GHz, by ZR , I obtain 49.0=ZR , and find 

that 02.0|| ≤− ZZ RR  over the entire frequency range. This value of experimentally 

obtained ZR  is close to the theoretical value of ½ for large damping. Also shown in 

the inset is the variance ratio obtained with no frequency averaging (small circles). 

These are deviations from the frequency averaged ratio values with a standard 

deviation of 0.04. Nevertheless, the mean value of the variance ratio over the entire 

frequency range is 0.49. 

The circles, stars and dashes in Fig. 7.3 show the variation in ]][ln[ 21ZVar , 

]][][ln[ 2211 ZVarZVar  and ]][][ln[ 2211 ZVarZVarRZ  respectively, as a function of 
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frequency. The agreement is quite good (i.e., the dashes overlie the open circles) at all 

frequencies [81]. 

 

Fig.7.3: ][ 21ZVar  (circles), ][][ 2211 ZVarZVar  (stars) and ][][ 2211 ZVarZVarRZ  

(dashes) are plotted on a natural-logarithmic scale as a function of frequency from 4 

to 12 GHz. Inset shows the ratio ZR  as a function of frequency (solid line). The small 

circles show ZR without any frequency averaging. 

 
Similarly in Fig. 7.4, I present data for the scattering variance ratio. 

Experimentally I obtain 5.0=SR  and 08.0|| ≤− SS RR  over the frequency range 4-

12 GHz. The circles, starts and dashes in Fig. 7.4 show the variation in ][ 21SVar , 

][][ 2211 SVarSVar  and ][][ 2211 SVarSVarRS , respectively, as a function of 
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frequency. Similar to the impedance data (Fig. 7.3), I observe that the data for 

][][ 2211 SVarSVarRS (dashes) overlie the data for ][ 21SVar (open circles), again 

indicating that the experimentally obtained value for SR  shows good agreement with 

the asymptotic theoretical values for highly damped time-reversal symmetric systems 

over a large frequency range [81]. 

 

Fig. 7.4: ][ 21SVar  (circles), ][][ 2211 SVarSVar  (stars) and ][][ 2211 SVarSVarRS  

(dashes) are plotted as a function of frequency from 4 to 12 GHz. Inset shows the 

ratio ZR  as a function of frequency (solid line).  
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An experimental study of the impedance and scattering variance ratios for low 

values of α  ( 5.0<α ) as well as for the BTRS case is currently not accessible with 

the present experimental setup and needs to be explored in the future. 

7.2 Summary of Chapter 7 and Conclusions 

In summary, I have experimentally tested the predictions of [81] for the 

impedance and scattering variance ratios in the limit of high loss and find good 

agreement between theoretical predictions and experimental data. The impedance and 

scattering ratios are of key significance in the field of HPM effects on electronics 

within complicated enclosures. These quantities determine the range of voltages that 

can be induced on the second port due to a given excitation at the first port - without 

the requirement of measuring the transmission properties of the enclosure. This point 

will be addressed in greater detail in Chapter 8. 
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Chapter 8: Applications of the Random Coupling Model to 
Predicting HPM-Effects in 3-D, Real World Enclosures 

 
 

The “radiation impedance” normalization which was introduced through the 

“Random Coupling Model (RCM)” in Chapter 2 has proved to be extremely 

successful in accounting for the non-ideal coupling between the driving ports and the 

quasi-two-dimensional, quarter-bow-tie shaped wave-chaotic cavity of chapter 3. In 

chapters 4, 5 and 6, it was shown that the experimental results for the statistical 

descriptions of the normalized impedance, admittance and scattering matrices were in 

good agreement with corresponding predictions from Random Matrix Theory. 

However, these experimental results were validated on a microwave cavity which was 

specifically designed to have chaotic ray dynamics. The objective of the current 

chapter is to push the “Random Coupling Model” towards more real-world scenarios- 

namely, the coupling of electromagnetic radiation into complex enclosures, such as a 

computer-box, which is of key interest to researchers and engineers in the HPM-

effects and Electromagnetic Compatibility community. 

To achieve this objective, I first need to establish three aspects about the 

wave-scattering within the computer-box cavity. Firstly, I need to experimentally 

prove the existence of wave-chaotic scattering within the computer-box cavity 

(section 8.1). Secondly, the applicability of the “radiation impedance” normalization 

to account for non-ideal port coupling in a three-dimensional coupling-geometry, 

where polarization of the waves and the effects of field variations associated with the 

presence of a side-wall has to be established experimentally (section 8.2). Note that in 
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the experimental setups described in chapter 3, the driving ports were positioned 

many wavelengths away from the side-walls so that the near-field structure of the 

ports was not altered by the side-walls. This is not the case for the results presented in 

this chapter. Finally, the existence of universal fluctuations in the normalized 

impedance and normalized scattering matrices for the computer-box cavity (3-D 

geometry) has to be established and shown to be in agreement with corresponding 

predictions from Random Matrix Theory. This aspect is covered in section 8.3. 

Once these three aspects of the wave-scattering within the computer-box 

cavity has been experimentally established, it is then possible to utilize the Random 

Coupling Model to introduce a prediction algorithm for the statistical nature 

(Probability Density Function) of the induced voltages at key points (such as a 

microprocessor-pin lead, a PCB track, etc.) within the computer-box cavity, for a 

given HPM attack scenario. This algorithm, which I call the “RCM Voltage 

Algorithm”, is explained and experimentally validated in section 8.4. In section 8.5, 

another prediction algorithm for the variance of the induced voltages based upon the 

Hauser-Feshbach scattering ratios, which was introduced in chapter 7, is presented 

and experimentally validated. Then in section 8.6, based upon the insights gained 

from the Random Coupling Model, certain design-guidelines are presented to make a 

generic 3-D complicated enclosure more resistant to HPM attack. Finally, section 8.7 

concludes this chapter with a summary of the results and its implications. 
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8.1 Proving the Existence of Wave-Chaotic Scattering in a Computer-Box Cavity 

The three-dimensional cavity under study is a typical computer-box of 

physical dimensions 38 cm x 21 cm x 23 cm (Fig. 8.1(a)), which contains all the 

internal electronics – motherboard, memory chips, network card, etc (Fig.8.1(b)). The 

floppy-drive, CDROM-drive and SMPS power-supply unit were removed to increase 

the internal volume of the cavity and also to decrease the inherent cavity-loss. The 

cavity was excited by means of two ports, labeled Port 1 and Port 2 in Fig. 8.1(c), 

each uniformly radiating 7dBm of RF power over the frequency range of 4 to 20 

GHz. The free-space wavelength at 4 GHz corresponds to about 7.5 cm which is 

about three times smaller than the smallest cavity dimensions. The ports are sections 

of coaxial transmission lines, with the exposed inner-conductor extending 13 mm into 

the volume of the cavity from the side walls. Each port has an inner-conductor 

diameter of 2a=1.27mm.  
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Fig. 8.1: (a) Photograph of the experimental setup of the computer-box used for 

testing the Random Coupling Model. The computer-box is connected to the Agilent 

E8364B Vector Network Analyzer (in background). (b) Photograph of the computer-

box with the outer metallic-casing removed. The motherboard and one of the driving 

ports (port 1) on the bottom-plate of the computer-box cavity are clearly visible.(c) 

Schematic showing the location of the two driving ports, the paddle-wheel mode-

stirrer used to generate an ensemble of cavity measurements. (d) Photograph showing 

one of the paddle-wheel blades of the mode-stirrer. The paddle-wheel blade is made 

of card-board paper coated with aluminum foil. 

 

To make a statistical analysis of the electromagnetic response of the 

computer-box cavity, the first step involves measuring a large ensemble of the full 
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2x2 cavity scattering matrix ( ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

SS
SS

S
t

) using an Agilent E8364B Vector 

Network Analyzer. This is referred to as the “Cavity Case”. To realize this large 

ensemble, a mode-stirrer is introduced into the volume of the cavity. The mode-stirrer 

(shown in schematic in Fig. 8.1(c)) consists of a central metallic shaft (shown as the 

blue line) of diameter about 5 mm with two paddle-wheel type blades (silver-colored 

rectangles) measuring approximately 10cm x 5cm and placed 7 cm apart. The two 

blades are made of cardboard-paper coated with aluminum foil (Fig. 8.1(d)) and are 

oriented perpendicular to each other on the shaft. Each orientation of the blades 

within the cavity results in a different internal field configuration. For each 

configuration, S
t

 is measured as a function of frequency from 4 to 20 GHz in 16000 

equally spaced steps. By rotating the shaft through twenty different positions, an 

ensemble of 320,000 computer-box cavity scattering matrices is thus collected. From 

the )(21 ωS  measurements, it is inferred that the typical loaded-Q of the computer-box 

cavity ranges from about 45 at 4GHz to about 250 at 20 GHz. 
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Fig. 8.2: (a) The histogram of the estimated ratio ( Λ ) of the maximum transmitted 

power to the minimum transmitted power at each frequency for the twenty different 

positions of the mode-stirrer. The histogram is fairly wide-spread with a mean of 

17.3dB and a standard deviation of 6.2dB. (b) Variation in Λ  with frequency (shown 

as the blue circles). A dynamic range of nearly 55dB is observed for Λ  over the 

frequency range of 4 GHz to 20 GHz. 

 

The extreme sensitivity of the internal field configurations to the orientation 

of the mode-stirrer position, which gives rise to wave-chaotic scattering, can be 

inferred by estimating the ratio of the maximum transmitted power to the minimum 

transmitted power at each frequency for the twenty different positions of the mode-

stirrer. This power-ratio, denoted as Λ  (Fig. 8.2), has a distribution which is fairly 

wide-spread with a mean of 17.3dB and a standard deviation of 6.2dB (Fig.8.2(a)). 
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The dynamic range of Λ  is nearly 55dB over the frequency range of 4 to 20 GHz 

(shown as the blue circles in Fig. 8.2(b)). This indicates that there are significantly 

large field fluctuations within the computer-box cavity as the mode-stirrer is rotated, 

thereby creating an environment conducive to the formation of chaotic ray-dynamics. 

An even more conclusive validation of wave-chaotic scattering within the computer-

box cavity, based upon the Dyson’s circular ensemble, is explained in section 8.3.1. 

 

8.2 Characterization of the Measured Radiation-Case Scattering Matrix Elements 

To prove that the applicability of the “radiation impedance” normalization to 

three-dimensional port coupling geometries, it is necessary to make an estimate of the 

radiation impedance(or radiation scattering) matrix of the driving ports and show that 

this quantity incorporates the aspects of non-ideal port-coupling. As was described in 

chapter 3, the radiation measurement involves simulating an outward radiation 

condition for the two driving ports- but retaining the coupling structure as in the 

Cavity Case. To achieve this condition, all internal electronics and inner surfaces of 

the cavity side-walls are coated with microwave absorber (Eccosorb HR-25 and 

ARC-Tech DD10017D respectively) with the intent of preventing reflections within 

the computer-box cavity (Fig.8.3). A circular area of about 5 cm radius is left 

uncoated around each of the ports so as to retain the near-field structure of the ports. 

The “Radiation Case” now involves measuring the resultant 2x2 radiation-scattering 

matrix, ⎥
⎦

⎤
⎢
⎣

⎡
=

radrad

radrad
rad SS

SS
S

2221

1211t
, from 4 to 20 GHz with the same 16000 frequency 

steps as in the “Cavity Case”. 
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Fig. 8.3: Photograph of the experimental setup for the implementation of the 

“Radiation Case”. All inner side-walls are coated with a dielectric absorber (ARC 

Tech DD 10017D), while the internal electronics are coated with a microwave foam 

absorber (Eccorsorb HR-25). A small circular region (about 5cms in radius) around 

each driving port (not visible in photograph) is left uncoated to retain the near-field 

structure of the driving ports. 

  

In figure 8.4, the nature of the measured scattering matrix elements is shown 

as a function of frequency. The gray, pink and cyan circles represent the magnitude of 

the ensemble-averaged computer-box cavity 11S , 22S  and 21S  elements respectively. 

The magnitude of the ensemble averaged scattering matrix elements is indicative of 
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the degree of non-ideal coupling between the ports and the cavity. A frequency range 

where the coupling between port-i and the cavity is good, results in small values of 

2|| 〉〈 iiS ( 2,1=i ). As can be seen in the figure, the two ports have vastly different 

frequency-dependent coupling characteristics (indicated by the gray and pink circles 

for port 1 and port 2 respectively). The solid black, red and blue lines represent the 

magnitude of the measured radiation-scattering elements radS11 , radS22  and radS21   

respectively. As was observed for the 1-port wave-chaotic cavity data in chapter 4, 

here too, the measured radiation scattering elements closely follow the general trend 

in the ensemble averaged scattering elements over the entire frequency range. This 

indicates that the radiation matrix elements accurately quantify the non-ideal coupling 

between the ports and the computer-box cavity at all frequencies. The slight 

oscillatory nature of the radiation-scattering matrix elements is attributed to short-ray 

reflected paths within the computer-box cavity. These short-ray paths arise mostly 

due to the flat side-walls of the cavity and imperfections in the absorptive properties 

of the microwave-absorber coating. 
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Fig. 8.4: Nature of the measured computer-box cavity scattering matrix elements as a 

function of frequency. The gray, pink and cyan circles represent the magnitude of the 

ensemble-averaged computer-box cavity 11S , 22S  and 21S  elements respectively. The 

solid black, red and blue lines represent the magnitude of the measured radiation-

scattering elements radS11 , radS22  and radS21   respectively, which closely follow the 

general trend in the corresponding ensemble-averaged cavity scattering matrix 

elements. 
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8.3 “Radiation Impedance” Normalization and the Applicability of Random Matrix 

Theory 

Having measured the ensemble of the computer-box cavity scattering matrix 

S
t

, and the corresponding radiation-scattering matrix radS
t

, I convert these quantities 

into the corresponding cavity-case impedance matrices Z
t

 and radiation-impedance 

matrices radZ
t

, respectively using Eq.(2.12). Here each port is assumed to have a 

single operating mode with characteristic impedance of 50 ohms over the frequency 

range of the experiment. Each Z
t

 is then normalized with the corresponding measured 

radZ
t

 at the same frequency using Eq. (2.10). The normalized impedance matrix zt , 

thus obtained, is then converted to the normalized scattering matrix st  using Eq. 

(2.11).  

 8.3.1 Dyson’s Circular Ensemble for the Computer-Box Cavity 
 

To prove conclusively the existence of wave-chaotic scattering within the 

computer-box cavity, I resort to experimentally verifying the statistical independence 

of the magnitude and phase of the normalized st  eigenvalues. This hypothesis, which 

is known as the Dyson’s Circular Ensemble, is a hall-mark of wave-chaotic scattering 

and was shown to be extremely robust and unaffected by the presence of loss (See 

Chapters 4 and 5 ). 

To validate this hypothesis, I diagonalize st  using an eigenvalue 

decomposition, 1−= sss VVs ttt
tttt λ ;where, sVt

t
 is the 2x2 eigenvector matrix of st ; and st

t
λ  is 

a diagonal matrix containing the two complex eigenvalues of st . Since the computer-
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box cavity is sufficiently of low Q, st  has complex, sub-unitary eigenvalues, i.e. 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

||0
0||

2

1
φ

φ

λ
λ

λ j

j

s e
e

t

t
, where 1|| 2,1 <λ . As in chapter 5, the two complex 

eigenvalues of the st  ensemble are grouped into one list, which I shall refer to as 

“ stλ̂ ”. I observe that grouping the two eigenvalues together as opposed to randomly 

choosing one of the two eigenvalues does not change the statistical properties of the 

results that follow. Figure 8.5(a) shows a plot in the complex plane of the eigenvalue 

density for a representative set of measured st  ranging between 8 to 9 GHz. The 

color-scale level at any point in Fig. 8.5(a) indicates the number of points for 

]}ˆIm[],ˆ{Re[ ss tt λλ  that lies within a local rectangular region of size 0.0025 x 0.0025. 

Next, angular slices (shown as dotted red lines in Fig. 8.5 (a)) which subtend a polar-

angle of 2/π  are taken and histogram approximations to the PDF of |ˆ| stλ  of the 

points lying inside each of the four slices are computed. This is shown by the circles, 

squares, stars and triangles in Fig. 8.5(b). It can be observed that the PDF 

approximations are essentially identical and independent of the angular-slice. 
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Fig. 8.5: (a) The density of eigenvalues of stλ̂  in the complex plane is shown for 

frequencies in the range 8 GHz to 9 GHz for the computer-box cavity. The color-

scale code blue, green, yellow, red are in ascending density order.  (b) Angular slices 

( o90 ) with the symbols (stars, triangles, circles, squares) indicate regions where the 

PDF of |ˆ| stλ  of the data in (a) is calculated and shown. Observe that the four PDFs 

are nearly identical. (c)  Experimental histogram approximations to the PDF of the 

eigenphase of st  (i.e.,
stλ

φ ˆ ). Two annular rings defined by 04.0|ˆ|0 ≤≤ stλ  and 

1.0|ˆ|04.0 ≤≤ stλ  of the data in (a) are taken and the histograms of the phase of the 

points within these regions are shown as the solid diamonds and hollow triangles 

respectively.  The red solid line is a uniform distribution ( )2/(1)( πφ =P ). 
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In Fig. 8.5(c), the histogram approximations of the phase of the points lying 

within two-annular rings defined by 04.0|ˆ|0 ≤≤ stλ (hexagons) and 

1.0|ˆ|04.0 ≤≤ stλ (stars) are shown. A nearly uniform distribution is obtained for both 

cases indicating that the PDF of the phase of stλ̂  is independent of the radius of the 

annular ring. Also shown in red is the uniform distribution with )2/(1)( πφ =P . 

Figure 8.5 thus supports the hypothesis that the magnitude and phase of the 

eigenvalues of st  are statistically independent of each other and that the eigen-phase 

of st  is uniformly distributed from 0  to π2 - thereby confirming that the scattering 

within the computer-box cavity is truly wave-chaotic. This result also establishes the 

effectiveness of the radiation-impedance normalization process to filter away the 

system-specific aspects of non-ideal port coupling in a complicated 3-D geometry. 

8.3.2 Existence of Universal Impedance Fluctuations and applicability of         

Random Matrix Theory 

Now that the existence of wave-chaotic scattering within the computer-box 

cavity has been established, in this section, I test the applicability of Random Matrix 

Theory to describe the universal fluctuations in the impedance matrices of such three-

dimensional cavities.  

I consider the experimentally determined normalized impedance zt  matrices 

that lie within a frequency range of 17 to 18 GHz. I define this set of zt  matrices as a 

“data-set”. By an eigenvalue decomposition, each zt  matrix yields two complex 

eigenvalues, which I group into a single list denoted as ztλ̂ . I observe that grouping 

the two eigenvalues together, as opposed to randomly considering one of the two 
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eigenvalues does not alter the statistical results that follow. Histogram 

approximations to the Probability Density Functions of the real and imaginary parts 

of ztλ̂  are shown in Fig. 8.6(a) and Fig. 8.6(b) respectively. The variance ( 2σ ) of 

experimental PDFs in Fig. 8.6(a) and Fig. 8.6(b) are nearly identical in magnitude, 

i.e., 42
]ˆIm[

2
]ˆRe[ 105.13 −×=≅

zz tt λλ
σσ . From the variance of the PDFs of the real and 

imaginary parts of ztλ̂ , and by using Eq.(5.1), I estimate a value of the cavity loss-

parameter (α ) for this data-set to be about 236≅α .  

Using the value of 236=α , a  random matrix Monte Carlo simulation yields 

the red curves shown in Fig. 8.6(a) and Fig. 8.6(b) for the  real and imaginary parts of 

ztλ̂  PDFs. Relatively good agreement is observed between the experimentally derived 

PDFs and those generated numerically from Random Matrix Theory, thereby 

confirming the ability of Random Matrix Theory to explain the statistical aspects of 

the universal impedance fluctuations in the computer-box cavity. 

 

 

Fig. 8.6: Marginal PDFs for the real (a) and imaginary (b) parts of the grouped 

eigenvalues of the normalized computer-box cavity impedance ztλ̂  (stars) in the 
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frequency range of 17-18 GHz. Also shown are the single parameter, simultaneous 

fits for both the real and imaginary normalized impedance PDFs (red solid lines), 

where the loss parameter α ( 236=α ) is obtained from the variance of the data 

represented by the stars in (a) and (b). 

 8.3.3 Variation of α  with Frequency for the Computer-Box Cavity 
 

To determine the range of α  values for the measured data on the computer-

box cavity, I consider a sliding window of width 1GHz that steps every 500 MHz 

over the frequency range from 4 to 20 GHz. The black stars in Fig. 8.7 represent the 

variance of the real part of ztλ̂  as a function of frequency. The red circles in Fig. 8.7 

represent the variance of the imaginary part of ztλ̂  as a function of frequency. Good 

agreement is observed between the black stars and the red circles over the entire 

frequency range of 4 to 20 GHz, as predicted by the Random Coupling Model (see 

chapter 2 and chapter 5).  
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Fig. 8.7: The variance of ]ˆRe[ ztλ (black stars) and ]ˆIm[ ztλ  (red circles) is shown as a 

function of frequency from 4 to 20 GHz for the computer-box cavity data. The 

agreement between these two quantities is good and robust over the entire frequency 

range despite the change in cavity Q and coupling. Inset: The estimated value of the 

cavity loss-parameter (α ), which is derived from the mean of the variance of 

]ˆRe[ ztλ (black stars) and ]ˆIm[ ztλ  (red circles), and Eq.(5.1). 

 

The solid blue circles in inset of Fig. 8.7 represent the resultant value of the 

cavity-loss parameter α , which was determined from the average of the variances of 

the real and imaginary parts of ztλ̂ , and Eq. (5.1). As the inset in Fig. 8.7 shows, the 
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estimated value of α  increases as a smooth function of frequency from 22≅α  at 

4GHz to 270≅α  at about 20GHz.The smooth frequency-dependent nature of  α  

also indicates that the quality factor (Q) of such complicated enclosures does not 

fluctuate wildly as a function of frequency (this fact has also been established by 

[56]). 

 

8.4 “RCM Induced Voltage Algorithm” for Prediction of Induced Voltage PDFs 

In section 8.3, it was experimentally established that the computer-box cavity 

exhibits universal scattering and impedance fluctuations characteristic of wave-

chaotic systems and that these universal fluctuations are well described, in a statistical 

sense, through Random Matrix Theory. This section builds upon the results of section 

8.3, to formulate a prediction algorithm called the “RCM Induced Voltage 

Algorithm” for the PDF of induced voltages at specific target-ports within a 

complicated wave-chaotic cavity for a given excitation stimulus at some other driving 

source-port. 

 The challenge of predicting the PDF of induced voltages at specific ports 

(which could be a sensitive IC pin of a microprocessor within a computer-box) due to 

a certain incident RF power from a source-port (which could be a cooling vent on the 

computer-box casing) within complicated cavities such as a computer-box cavity is of 

significant interest to the HPM-effects and Electromagnetic Compatibility 

community. The “RCM Induced Voltage Algorithm” provides a quick statistical 

solution to this problem and works under the assumption that the cavity is wave-
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chaotic, and that it possesses universal fluctuations in its scattering or impedance 

properties which are explained through Random Matrix Theory.  

For a wave-chaotic cavity with a source-port and target-port, denoted as “port 

1” and “port 2” respectively, the algorithm essentially requires only five pieces of 

information in order to make accurate statistical predictions for the induced voltages 

at the given target-port for a particular excitation at port 1. These five pieces of 

information are, 

1. The frequency of interest ( f ). 

2. The volume of the cavity (V ). 

3. The typical Q of the cavity-modes (Q ) at the frequency of interest. The 

presence of other ports in the system modifies the Q of the cavity. Hence, their 

contribution is indirectly accounted for through the typical Q of the cavity.  

4. An estimate of the 2x2 radiation-impedance matrix of the source and target 

ports within the cavity at the frequency of interest ( radZ
t

). This quantity can 

either be directly measured (as in the experiments presented in this chapter) or 

determined numerically using conventional EM-solver software. In certain 

cases, analytic expressions may exist for relatively simple coupling structures 

such as a horn antenna [85], a micro-strip antenna [86] or a Hertzian dipole 

[49]. 

5. Mode of HPM attack- An estimate of the radiated power-spectrum profile at 

the source port )(1 fP . 

The first three pieces of information determine the value of the cavity loss-

parameter (α ). For three-dimensional air-filled wave-chaotic cavities, 
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)2/( 23 QVk πα =  as explained in chapter 2. The value of α  in turn determines the 

shapes and scales of the normalized impedance zt , and can be numerically generated 

using random matrix Monte Carlo simulations (see chapter 2). This numerically 

derived normalized impedance zt  can then be combined with the estimated radiation-

impedance matrix radZ
t

 and Eq.(2.10), to yield a numerical estimate of the raw-cavity 

impedance ⎟⎟
⎠

⎞
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⎝
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 ensemble. Finally, using the formalism of the ABCD-

transmission parameters for a two-port microwave network as explained in [87], it is 

possible to determine the induced voltage ensemble at the target-port ( 2V ) for the 

specified radiated power-spectrum profile )(1 fP  at the source-port through,  
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and radiated-power at port-1,            111 IVP = ,                                                       (8.3) 

yielding,                                       11
2
21112 // ZZPACPV == .                             (8.4) 

The steps of this algorithm are outlined in Fig. 8.8. 
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Fig. 8.8: Flowchart indicating the formalism of the “RCM Induced Voltage” 

algorithm. The inputs to the RCM Voltage algorithm, i.e., frequency ( f ), cavity 

volume (V ) , cavity Q , radiation impedance matrix of source and target ports ( radZ
t

), 

and the radiated power-spectrum profile at port-1( 1P ), are indicated in blue. 

 

To test the validity of this algorithm for the computer-box cavity, I first 

choose an arbitrary frequency range of 4.5 GHz to 5.5 GHz. I assume that the losses 

do not change significantly in this given frequency range. From the )(21 ωS  

measurements, I estimate that the typical Q for the computer-box cavity over this 

frequency range is about 45 (i.e., 45≅Q ). I then estimate the value of  
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)2/( 23 QVk πα =  using cfk /2π=  with GHzf 5=  and 323.021.038.0 mV ××=  (the 

physical volume of the computer-box cavity). This yields a value for α  to be about 

24. Note that since the computer-box cavity contains components of different 

dielectric constants (such as the FR-4 material used to fabricate the motherboard), the 

electromagnetic-volume of the computer-box cavity is different from the physical 

volume of the computer-box cavity. However, since the computer-box cavity is 

sufficiently lossy (thereby yielding values of 1>>α ), the statistics of the normalized 

impedance are relatively insensitive to small changes in  α . This offsets the error in 

the estimate of the computer-box cavity volume.  
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Fig. 8.9: Implementation of the RCM Voltage algorithm for the computer-box cavity 

in a frequency range of 4.5-5.5GHz. The value of  )2/( 23 QVk πα =  taking into 

account the volume of the computer-box cavity ( 323.021.038.0 mV ××= ), the 

estimated cavity Q (about 45) and the center frequency of 5 GHz, yields 24≅α . 

Using random matrix Monte Carlo simulations, an ensemble of 100,000 normalized 

impedance matrices ( zt ) which correspond to an α -value of 24, are generated. The 

measured radiation impedance matrix ( radZ
t

) is then combined with the zt -ensemble 

to obtain an ensemble of cavity impedance matrices. This cavity impedance ensemble 

is then combined with the radiated power-spectrum profile at port-1 ( 1P ) to yield an 



 

 173 
 

ensemble of induced port-2 voltage values ( 11
2
2112 / ZZPV = ) from which the PDF of 

2V  can be generated. 

 

I then use random matrix Monte Carlo simulations with a random-matrix size 

of 1000=M , to generate an ensemble of 100,000 normalized impedance zt  matrices 

which correspond to a value of 24=α (see section 2.5). Combining this ensemble of 

zt  matrices with the measured radiation impedance matrix radZ
t

 over the frequency 

range of 4.5GHz to 5.5GHz using Eq.(2.10), I obtain an estimate for the ensemble of 

the computer-box cavity impedance in the “Cavity case”. In order to determine the 

nature of the induced voltage PDFs at port-2, I simulate two HPM attack scenarios by 

assuming two different radiated power-spectrum profiles at port-1, 

(i) Flat power-spectrum profile of 1 Watt radiated uniformly over the 

frequency range from 4.5GHz to 5.5GHz, i.e., 1)(1 =fP  for =f 4.5GHz to 5.5 GHz 

(inset of Fig.8.10(a)). 

(ii) Gaussian-shaped radiated power-spectrum profile centered at 5GHz and a 

standard-deviation of  03.0 GHz (inset of Fig. 8.10(b)). 

Note: In cases (i) and (ii), I have assumed that the port-1 radiated power-

spectrum profile is a purely real, scalar quantity. This assumption neglects any phase 

correlations between the frequency-components of the radiated signal from port-1. 

The resultant PDF of the magnitude of the induced voltage at port-2 is shown 

as the red curve in Fig. 8.10(a) for the flat radiated power-spectrum profile (i). The 

red curve in Fig. 8.10(b) represents the resultant PDF of the magnitude of the induced 
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voltage at port-2 for the Gaussian-shaped radiated power-spectrum profile (ii). Note 

that the induced voltage PDFs in the two cases is very different. 

 

 

Fig. 8.10: (a) Numerically determined PDF of induced voltages at port-2 obtained 

using the RCM Voltage algorithm for a 1-watt flat power-spectrum profile radiated 

from port-1 (inset) is shown as the red curve. The black stars represent the 

experimentally derived PDF of induced voltages at port-2 obtained using the elements 

of the measured cavity impedance matrix and Eq.(8.4), for a 1-watt flat power-

spectrum profile radiated from port-1. (b) Numerically determined PDF of induced 

voltages at port-2 obtained using the RCM Voltage algorithm for a Gaussian-shaped 

power-spectrum profile radiated from port-1(inset) is shown as the red curve. The 

black stars represent the experimentally derived PDF of induced voltages at port-2 

obtained using the elements of the measured cavity impedance matrix and Eq.(8.4), 

for a Gaussian-shaped power-spectrum radiated from port-1. Good agreement is 

observed in both cases between the predictions for the induced voltage PDFs obtained 
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from the RCM Voltage algorithm and those generated using the measured cavity 

impedance data. 

 

The stars in Fig. 8.10(a) represent the PDF of the induced voltage at port 2 for 

the flat radiated power-spectrum profile from port-1 (i) shown in inset and Eq.(8.4), 

where the terms 11Z and 21Z  correspond to the experimentally measured Cavity-Case 

impedances of the computer-box cavity. Similarly, the circles in Fig. 8.10(b) 

represent the PDF of the induced voltage at port 2 for the Gaussian-shaped radiated 

power-spectrum profile from port-1 (ii) shown in inset and Eq.(8.4), where the terms 

11Z and 21Z  correspond to experimentally measured Cavity-Case impedances of the 

computer-box cavity. Relatively good agreement is found between the induced 

voltage PDFs which were determined numerically (red curves) using only the 

measured radiation impedance matrix and random matrix Monte Carlo simulations 

based upon a derived value of α , and those induced voltage PDFs (symbols) which 

were generated using the experimentally measured Cavity-case impedance matrix 

ensemble. This confirms the validity of the “RCM Voltage Algorithm” as an accurate 

and computational fast method to predict the statistical nature of induced voltages at a 

given target-port for a specified excitation at a source-port. 

In the case of port-2 being a sensitive lead-pin of an integrated circuit which 

has several other lead-pins (other ports) in its near-field as might be the case for a 

high-density packaged VLSI chip, it might be possible to regard the other pins as 

passive-port components. Under this assumption, the presence of these passive-ports 

is incorporated into the wave-scattering dynamics within the enclosure through 
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modifications to the enclosure Q-value and the reduced volume of the enclosure. 

Complications to this assumption can arise if the near-by lead-pins are in different 

time-varying states i.e., logic-high state, logic-low state, or transitioning from one 

logic state to another. This aspect of the problem is presently beyond the capabilities 

of the RCM Voltage algorithm and deserves further investigation both from a 

theoretical and an experimental perspective.  

8.5 Predicting the Variance of Induced Voltages Using Hauser-Feshbach Relations 

This section is an extension of the scattering and impedance variance ratios 

(also known as Hauser-Feshbach relations) which were experimentally validated in 

Chapter 7 for the quarter-bow-tie shaped wave-chaotic cavity. In chapter 7, it was 

shown that in the limit of large α  (α >>1), the impedance-variance ratio defined as 

][][
][

2211

21

ZVarZVar
ZVarRZ = (Eq.(7.1)), and the scattering-variance ratio defines as 

][][
][

2211

21

SVarSVar
SVarRS = (Eq.(7.5)), were independent of coupling and were equal to 

½ for a time-reversal symmetric cavity. Here, ][AVar  corresponds to the sum of the 

variance of the real and imaginary parts of the complex quantity A , with the 

averaging performed over the ensemble of the different measurements of A . 
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Fig. 8.11: Variation in ZR  as a function of frequency from 4 to 20 GHz for the 

computer-box cavity is shown as the black circles. The fluctuations are attributed to 

the presence of short-ray paths within the computer-box cavity. By frequency 

averaging the data represented by the black circles over a span of 1 GHz, the red line 

is obtained, which has a value of 05.051.0 ±=ZR  over the entire frequency range 

from 4 to 20 GHz. The yellow dashed line represents the theoretical expected value of 

0.5 for the high-loss limit. 

 

For the computer-box cavity, Fig. 8.11 shows the nature of ZR  as a function 

of frequency from 4 to 20 GHz as the small black circles. The rapid fluctuations in 
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this quantity are on account of the short-ray paths within the computer-box cavity, as 

identified in chapter 7. By using a sliding window of width 1GHz, I obtain the red 

line which has a value of 05.051.0 ±=ZR  over the entire frequency range from 4 to 

20GHz. The yellow dashed line represents the theoretical expected value of 0.5. In 

Fig. 8.12, the nature of SR  as a function of frequency from 4 to 20 GHz is shown as 

the small black circles. As in Fig. 8.11, by using a sliding window of width 1GHz, I 

obtain the red line which has a value of 05.051.0 ±=SR  over the entire frequency 

range from 4 to 20GHz. The yellow dashed line represents the theoretical expected 

value of 0.5. In both cases, Fig. 8.11 and Fig.8.12, I observe relatively good 

agreement between the frequency-averaged values ZR  and SR , and the theoretical 

prediction of  0.5 for the high-loss limit. 
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Fig. 8.12: Variation in SR  as a function of frequency from 4 to 20 GHz for the 

computer-box cavity is shown as the black circles. The fluctuations are attributed to 

the presence of short-ray paths within the computer-box cavity. By frequency 

averaging the data represented by the black circles over a span of 1 GHz, the red line 

is obtained, which has a value of 05.051.0 ±=SR  over the entire frequency range 

from 4 to 20 GHz. The yellow dashed line represents the theoretical expected value of 

0.5 for the high-loss limit. 
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Using this variance relation between the scattering elements of the computer-

box cavity, it is possible to formulate a relation for the variance of the induced 

voltages at a target-port. In terms of the scattering matrix, the induced voltage at port-

2 can be written as, radZPSV 221212 = , where 1P  is the power radiated by port-1. If 1P  

is assumed to be a constant (say 1 Watt) and since radZ 22  is determined only by the 

port-coupling geometry, the variance of the induced voltage can be written as,  

 ][][ 212212 SVarZPVVar rad= .                                         (8.5) 

Provided port-1 and port-2 are correlated (i.e., communicate with each other), 

][ 21SVar  in Eq. (8.5) can be written in terms of SR , ][ 11SVar and ][ 22SVar  (Eq.(7.5)). 

It is therefore possible to determine the variance of the induced voltages at port-2 in a 

complicated, lossy ( 1>>α ) cavity without measuring the transmission properties of 

the cavity, i.e.,  

 ][][][ 22112212 SVarSVarRZPVVar Srad= .                    (8.6) 

The equivalence of Eq.(8.5) and Eq.(8.6) is shown in Fig. 8.13. Assuming 

WattsP 11 = , I determine the variance of the induced voltage at port-2 of the 

computer-box cavity utilizing Eq.(8.5). This is indicated as the blue stars in Fig. 8.13, 

where the variance-values have been frequency-averaged over a sliding window of 1 

GHz width. The red circles in Fig. 8.13 represent the variance of the induced voltage 

at port-2 of the computer box cavity for 1-Watt power radiated from Port-1 and 

utilizes Eq. (8.6), where ][ 21SVar  from Eq.(8.5) was replaced with 

][][ 2211 SVarSVarRS ( 51.0=SR  and was obtained from Fig. 8.12). The same 1GHz 

frequency averaging is employed for the data represented by the red circles, as in the 



 

 181 
 

case for the data represented by the blue stars. Relatively good agreement between the 

data represented by the blue stars and the red circles is observed over the entire 

frequency range from 4 to 20 GHz in spite of the variation in loss and coupling over 

this frequency-range. 

 

Fig. 8.13: The variance of the induced voltage at port-2 for 1-watt power radiated by 

port-1 determined using Eq.(8.5) and with 1GHz frequency-averaging is shown as the 

blue stars. The variance of the induced voltage at port-2 for 1-watt power radiated by 

port-1 determined using Eq.(8.6) and with 1GHz frequency-averaging is shown as the 

red circles, where the value of SR  in Eq.(8.6) is replaced with 51.0=SR . Good 

agreement is observed between the data represented by the blue stars and the red 

circles over the entire frequency range despite variations in loss and coupling. 
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8.6 Design Guidelines for HPM-Resistant Generic 3-D Complicated Enclosures 

For complicated enclosures with chaotic ray-dynamics, the Random Coupling 

Model has shown that there exists certain universal statistical properties in the 

impedance, admittance and scattering matrices of these systems, which depends only 

upon the value of the dimension-less cavity loss-parameter (α ). The Random 

Coupling Model has also shown that these universal statistical properties can be 

easily derived from experimental measurements of the cavity-enclosure by use of the 

radiation impedance of the driving ports. The radiation impedance is a non-statistical, 

frequency-dependent quantity which accurately quantifies the non-ideal coupling 

between the driving ports and the cavity-enclosure. Based on these lessons learnt 

from the Random Coupling Model, it is possible to deduce some simple design-

guidelines for generic 3-D complicated enclosures such as computer-boxes or aircraft 

fuselages, which will make them more resilient to HPM attack. 

a) Increasing the value of the cavity loss-parameter (α ) : 

For a three-dimensional cavity-enclosure, )2/( 23 QVk πα = , where the 

significance of the terms has been mentioned in chapter 2. As was shown 

in Fig. 4.1, increasing the value of α  (e.g. by decreasing the cavity Q) 

decreases the fluctuations in the cavity impedance values. This in turn 

reduces the probability for large internal field fluctuations or equivalently 

large induced voltage swings on the components housed within the cavity-

enclosure. 
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b) Radiation Impedance Engineering: 

Through the Random Coupling Model it was shown that perfect coupling 

implies 0ZZrad = , where radZ  and 0Z  represent the radiation impedance 

of the port coupled to the cavity, and 0Z  is the characteristic impedance of 

the transmission line connected to the port. This suggests that creating a 

large impedance mismatch between radZ  and 0Z  (i.e, 0ZZrad >>   or vice 

versa) will result in very poor transfer of the incoming HPM energy on the 

port, to the interior of the cavity-enclosure.  

c) Use of Non-Reciprocal Media: 

Though it has not been discussed in this dissertation, the use of non-

reciprocal media such as magnetized ferrites place within a cavity-

enclosure can significantly decrease the amplitude of field intensities 

within the cavity-enclosure. In addition to being inherently lossy 

(increasing the α -value of the cavity-enclosure), non-reciprocal media 

restrict instances of constructive interference between the rays bouncing 

within the cavity-enclosure. This in turn reduces the formation of “hot-

spots”(regions of high EM field intensities) [55] within the cavity-

enclosure.  

8.7 Summary of Chapter 8 and Conclusions 

The results discussed in this chapter are meant to provide conclusive 

experimental evidence in support of the “Random Coupling Model” for multiple-port, 

real-world, three-dimensional complicated enclosures. The experimental results have 



 

 184 
 

shown that the “radiation impedance” normalization process is extremely robust in 

quantifying the non-ideal port-coupling, even when polarization of the waves and 

field fluctuations due to the presence of side-walls in the near-field proximity of the 

driving ports, plays a role. The close agreement between the experimentally 

determined PDFs and those generated numerically from random matrix Monte Carlo 

simulations, support the use of Random Matrix Theory to model statistical aspects of 

real-world, three-dimensional complicated enclosures with chaotic ray dynamics.  

 In this chapter, I have shown that given an estimate of the cavity loss-

parameter α  and the full 2x2 radiation impedance matrix of the two-driving ports, it 

is possible to accurately predict the statistical nature of induced voltages on one of the 

two ports, for a specified excitation stimulus at the other port. I have also shown that 

using the Hauser-Feshbach scattering relation, it is possible to determine the variance 

of the induced voltage at a given port without the need for measuring the transmission 

characteristics of the cavity-enclosure. Based on the Random Coupling Model, I have 

also suggested certain design-guidelines to make a generic three-dimensional 

complicated enclosure (such as a computer-box or aircraft fuselage) more resistant to 

HPM attack. In an effort to make the Random Coupling Model accessible to the end-

user, who is concerned with utilizing the model to address electromagnetic 

compatibility issues in a given setup, I have been compiled a stand-alone Graphic-

User-Interface software called the “Terrapin RCM Solver v1.0” (see Appendix A). 

The current version of the software has several capabilities such as predicting the 

PDF of induced voltages at specific user-specified points within complicated 

enclosures for several HPM attack scenarios, and uncovering the universal 
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fluctuations in the impedance, admittance and scattering matrices of user-supplied 

measurements on real-world enclosures. More details on this software and its 

capabilities are elucidated in Appendix A.  
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Chapter 9: Final Conclusions and Scope for Future Work 

The “Random Coupling Model”, introduced in chapter 2, is a stochastic model 

which makes use of the Random Plane Wave hypothesis and Random Matrix Theory 

to formulate a statistical model for the impedance, admittance and scattering 

properties of time-reversal-symmetric (TRS) and broken-time-reversal-symmetric 

(BTRS) wave-chaotic systems. Perhaps the most important contribution of this model 

is its novel prescription of the “radiation impedance” normalization process which 

overcomes the issue of non-ideal port coupling. The non-ideal aspect of the port-

coupling to the chaotic cavity has posed a difficult hurdle for experimentalists in the 

field of wave chaos. Most theoretical predictions for the statistical nature of wave-

chaotic scattering exists in the limit that the driving ports are perfectly coupled to the 

cavity at all frequencies.  

However, experimentally, it is practically impossible to design such a 

coupling structure. With the “radiation impedance” normalization prescription, 

experimentalists are equipped with a strategy to filter out the effects of non-ideal port 

coupling from their measured experimental data on a wave-chaotic cavity for any 

arbitrary port-coupling structure. Experimentalists are thus in a position to make 

clear-cut comparisons of their normalized (and, in essence “perfectly coupled”) 

experimental data with theoretical predictions and/or numerical simulations from 

Random Matrix Theory.  

In this dissertation, I have shown good agreement between the normalized 

experimental data for the one-port (chapter 4) and two-port (chapter 5) impedance, 

admittance and scattering fluctuations of a time-reversal-symmetric (TRS) wave-
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chaotic cavity, and corresponding predictions from Random Matrix Theory. This 

agreement testifies to the potency of the “radiation impedance” normalization process 

as well as the applicability of Random Matrix Theory to describe the statistical 

aspects of wave-chaotic scattering. The results are generic in nature, and should apply 

to all systems showing instances of TRS wave-chaotic scattering- such as atomic 

nuclei, acoustic resonators, quantum corrals, quantum dots, etc. In chapter 6, I have 

utilized the Random Coupling Model along with the Schrödinger-Helmholtz analogy 

to conclusively test the predictions of [59] for the universal fluctuations in the 

conductance of dephased ballistic quantum-dots over a large range for the degree of 

dephasing, without the complicated effects of thermal fluctuations, impurity 

scattering or Coulomb interactions. Chapter 7 provided experimental validation for 

the impedance-based and scattering-based Hauser-Feshbach relations. 

In chapter 8, I have experimentally proved the existence of wave-chaotic 

scattering and universal fluctuations in the impedance and scattering properties of 

real-world, three-dimensional cavity-enclosures taking the example of a typical 

computer-box cavity. The “radiation impedance” normalization prescription was 

shown to be remarkably effective for complicated three-dimensional geometries and 

shown to incorporate the polarization of the waves and field fluctuations associated 

with the presence of the side-walls in the near-field zone of the driving-ports. In the 

final sections of chapter 8, I have shown that given very minimal information about 

the cavity-enclosure or its inner details, the Random Coupling Model can provide a 

simple, fast and efficient algorithm to accurately predict the statistical nature of 

induced voltages at specific points within the enclosure for a specified HPM-attack 
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scenario. The Random Coupling Model has thus proved itself to be extremely 

valuable to engineers in the field of statistical electromagnetism, electromagnetic 

compatibility (EMC) or HPM-effects.  

The Random Coupling Model, however, is still in its infancy- several 

extensions to the model are possible, as well as theoretical predictions for universal 

aspects of wave-chaotic scattering still remain experimentally untested. The next 

section introduces some ideas which, I strongly hope, are implemented in the future, 

thereby paving the way to make the Random Coupling Model a more versatile tool 

for wave-chaos experimentalists and EMC engineers alike.  

9.1 Future Work 

9.1.1 Cryogenic and 3-D Wave-Chaotic Cavity Design 

The results that I have presented in this dissertation are restricted to TRS lossy 

wave-chaotic systems. The inherent ohmic losses present within the cavity translate to 

a minimum accessible α -value of about 0.8 (even when placed in a bath of solid CO2 

at -78.5oC). Thus, the evolution of the normalized impedance, admittance and 

scattering probability density functions (PDFs) for small α -values )5.0( <α  remains 

experimentally untested. Experimentally attaining small α -values is also crucial for 

proving the universal, coupling-independent aspect of the impedance-based Hauser-

Feshbach ratio as compared to its scattering-based counter-part (as explained in 

chapter 7). 
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Fig. 9.1: (a) Photograph of the experimental setup for the wave-chaotic cavity, seen 

inside the white plastic tub, prior to filling the tub with liquid nitrogen. (b) 

Photograph of the wave-chaotic cavity inside the liquid-nitrogen bath. The tub is 

covered with a green plastic sheet so as to force the nitrogen vapors to exit only from 

a small tube on the side of the tub (not visible in photograph). The cooling (frost 

formation) on the transmission line connected to the driving-port is clearly visible. 

This cooling of the transmission line drastically alters its electrical properties thereby 

corrupting the room-temperature microwave calibration of the experimental setup. 

 

Previously, I did attempt to lower the inherent cavity ohmic losses by 

immersing the quarter-bow-tie wave-chaotic cavity in a bath of liquid nitrogen (at -

195.8oC). This setup is shown in Fig. 9.1(a). However, this experiment was 

unsuccessful since the extremely cold temperature of the bath resulted in the cooling 
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of the transmission lines connected to the ports, thereby changing its electrical 

properties (Fig. 9.1(b)). As a result, the room-temperature microwave calibration of 

the experimental setup was severely compromised, yielding nonsensical values for 

the measured data. Another issue associated with this experiment was the 

implementation of the radiation-case at cryogenic temperatures. The microwave 

absorber (ARC Tech DD10017D) used to implement the room-temperature radiation 

case is not rated to work at -195.8oC (also, I found the absorber becomes very brittle 

at cryogenic temperatures and loses its structural integrity). Thus the procurement of 

a new type of microwave absorber, rated to operate at cryogenic temperatures, would 

be needed to accomplish this radiation-measurement.  

Another option for cryogenic-cavity experiments, which could be considered 

as an extension of the “dry-ice test” mentioned in chapter 3, would be to immerse the 

wave-chaotic cavity in a bath of solid CO2 (at -78.5oC) and then pour methanol on top 

of the dry-ice. The methanol serves to further cool the system down due to 

evaporation of the methanol vapors. I have never actually tested this approach. The 

present quarter-bow-tie wave-chaotic cavity could also be coated with a layer of 

superconducting material with a high critical temperature. This would also serve to 

reduce the ohmic losses in the cavity, thereby increasing the cavity-Q and yielding 

small α -values. 

Small α -values can also be attained by designing a high-Q, three-dimensional 

enclosure in the shape of a rectangular box with a paddle-wheel mode-stirrer (similar 

to the computer-box cavity in chapter 8). The advantage of three-dimensional 
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enclosures is that the mode-density is much higher allowing for better stirring of the 

cavity-modes, which in turn, could result in better ensemble averaging. 

 9.1.2 Homogeneous versus Inhomogeneous Cavity Losses 

Almost all theoretical work on wave-chaotic scattering (the “Random 

Coupling Model” included) makes the assumption that the losses within the cavity are 

uniformly distributed. While this assumption may be approximately true for a 

metallic microwave cavity uniformly filled with a single dielectric at high 

frequencies, the assumption can break down at lower frequencies. At lower 

frequencies, the resonance widths can vary from mode to mode due to the shape of 

the nodal-pattern and its interaction with the losses along the contour of the cavity. To 

qualitatively show the influence of inhomogeneous losses, I performed the following 

experiment. 

For the one-port (diameter 2a=1.27mm) quarter-bow-tie chaotic-cavity 

presented in chapter 3, I created two different loss-case cavity profiles. In the first 

cavity case, what I refer to as the “Lumped Loss” cavity-profile, I placed two 15.2cm 

long strips of microwave absorber (ARC Tech DD10017D) along the curved inner 

side-walls of the cavity as shown in inset (a) of Fig. 9.2. Using the metallic 

perturbations of the type used in section 3.2, I measured the scalar scattering 

coefficient ( lumpS ) of an ensemble of one-hundred such cavity configurations in a 

frequency range of 3 to 18 GHz. In the second cavity case, what I refer to as the 

“Distributed Loss” cavity-profile, the same 15.2cm strips of microwave absorber 

(used in the Lumped-Loss cavity profile) were cut into 2cm long strips and placed 

with uniform spacing along the curved inner side-walls of the cavity as shown in inset 
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(b) of Fig. 9.2. Using the perturbation of the type used in section 3.2, I measured the 

scalar scattering coefficient ( distS ) of an ensemble of one-hundred such cavity 

configurations in a frequency range of 3 to 18 GHz. As explained in section 3.1, the 

radiation-case was also implemented where the inner side-walls of the cavity were 

totally covered with microwave absorber and the resultant radiation scattering 

coefficient ( radS ) was measured. Then, using the “radiation impedance” 

normalization process (as explained in section 3.1), the normalized impedance ( lumpz ) 

and ( distz ) corresponding to the Lumped-Loss cavity-profile and Distributed-Loss 

cavity-profile was obtained.  

 

Fig. 9.2: The value of the cavity loss-parameter ]Re[ lumpzα (open circles), 

]Im[ lumpzα (closed circles), ]Re[ distzα  (open stars) and ]Im[ distzα  (closed stars) determined 
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from the variance of ]Re[ lumpz , ]Im[ lumpz , ]Re[ distz  and ]Im[ distz , and Eq.(2.6). Note 

the disparity between the data sets represented by the stars and the circles. Inset (a) 

Schematic showing the implementation of the Lumped-Loss Cavity profile. Inset (b) 

Schematic showing the implementation of the Distributed-Loss Cavity profile. 

 

By employing a sliding frequency window of width 1GHz which steps every 

500 MHz, I computed the variance of ]Re[ lumpz , ]Im[ lumpz , ]Re[ distz  and ]Im[ distz  of 

the normalized impedance values that lie within each window for both the lumped-

loss and distributed-loss cavity profiles. From these variance values and Eq.(2.6), I 

determined the corresponding value of the cavity loss-parameter ]Re[ lumpzα (open 

circles), ]Im[ lumpzα (closed circles), ]Re[ distzα  (open stars) and ]Im[ distzα  (closed stars) in 

Fig. 9.2. It can be observed that there is good agreement between the derived cavity 

loss-parameter values from the real and imaginary parts of the normalized impedance 

corresponding to a given loss-case cavity-profile (lumped-loss or distributed loss) 

over the entire frequency range. However, the α -values are significantly different for 

the two different loss-case cavity-profiles (stars and circles). I attribute this trend to 

the effects of non-uniformly distributed loss within the cavity. Further study on the 

effects of inhomogeneous distributed loss on the wave-scattering properties of such 

systems is necessary. Recently, there has been some effort to study the non-uniform 

spreading of the resonance widths due to inhomogeneous distribution of cavity losses 

[88, 89]. 
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9.1.3 Effects of Short-Ray Periodic Orbits in the Measured Radiation Case 

In the “radiation impedance” normalization process, the radiation-case 

theoretically assumes that the distant side-walls of the cavity are moved out to infinity 

thereby preventing any reflections of the waves back to the driving port (see chapter 

2). Experimentally, the radiation-case is implemented by coating the side-walls of the 

cavity with commercial microwave-absorber ARC Tech DD10017D (see chapter 3). 

This microwave absorber has frequency dependent absorptive properties which 

provide at best 25dB of reflection loss over the frequency range of 3 to 18GHz for 

normal incidence of the waves onto the absorber. On account of these imperfections, 

there is some finite amount of reflected waves returning back to the port. These 

reflections are on account of “short-path orbits” where the wave, after leaving the 

port, bounces a finite number of times within the radiation-case cavity setup before 

returning to the port (Fig.9.3). The short-ray orbits manifest themselves as 

fluctuations in the measured radiation-scattering or impedance properties of the 

driving port (see chapter 8). 



 

 195 
 

 

Fig. 9.3: Implementation of the experimental Radiation-Case. The red lining along the 

inner side-walls of the cavity represents the microwave absorber (see chapter 3). The 

one-bounce short-ray periodic orbits from the flat side-walls of the cavity are shown 

as the dashed blue lines. 

 

To try to account for these short-ray orbits, I performed the following 

experiment on the quarter-bow-tie wave-chaotic cavity of chapter 3 driven by a single 

port with a coupling structure similar to that described in section 3.1. The port has an 

inner diameter of 2a=1.27mm. Using the perturbations of the type used in section 3.2, 

I measured one hundred configurations of the Loss-Case 0 cavity scattering 

coefficient S  in a frequency range of 3 to 18 GHz. I also created the radiation-case as 

mentioned in chapter 3, where the entire length of the inner side-walls of the cavity 

was coated with microwave absorber, and measured the resultant radiation scattering 
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coefficient a
radS  over the same frequency range as in the cavity-case (inset (a) in Fig. 

9.4). 

 

Fig. 9.4: Magnitude of the measured scattering coefficient for the cavity setup shown 

in inset (a)-orange, inset (b)-purple, inset (c)-brown, inset (d)- blue. 

 

In addition, I also measured three “partial radiation-cases”, wherein certain 

sections of the cavity side-walls were left uncoated with microwave absorber. This is 

shown schematically as the insets (b), (c) and (d) in Fig. 9.4. I then measured the 

resultant radiation scattering coefficients from 3 to 18 GHz for these three partial-

radiation cases (labeling them as b
radS , c

radS  and d
radS  corresponding to the setup 

shown in insets (b), (c) and (d) respectively). The magnitude of these partial-radiation 

scattering coefficients is shown in Fig. 9.4. Note the fluctuations present in the 
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partial-radiation case measurements (purple, blue and brown curves), as compared to 

the radiation-case measurement (orange curve). The purpose of this exercise is to 

determine the contribution of a single-bounce short-ray orbit to the measured 

radiation case, i.e., the fluctuations introduced into the measured radiation case due to 

a wave that leaves the port bounces only once on the cavity side-walls before 

returning to the port. 

 

Fig. 9.5: Magnitude of the measured radiation-scattering coefficient for the cavity 

setup shown in inset (a)-orange, and the corrected-radiation scattering coefficient-

blue. The fluctuations in the data represented by the blue line mostly come from one-

bounce short-ray orbits. 

 

From the measured data in Fig. 9.4, I construct a “corrected” radiation 

scattering coefficient ( )()()( a
rad

c
rad

a
rad

b
rad

a
rad

a
rad

a
rad

corr
rad SSSSSSSS −+−+−+= ) which 
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should account for the contributions of the single-bounce short-ray orbits and is 

shown in Fig. 9.5 as the blue line. The orange line in Fig. 9.5 is the measured 

radiation scattering coefficient ( a
radS ). Using this corrected-radiation scattering 

coefficient, I normalize the measured cavity data by first converting them to the 

appropriate cavity impedances (using Eq.(3.1) and Eq.(3.2)) and then using the 

“radiation impedance” normalization process as mentioned in chapter 3 (Eq.(3.3)). In 

this manner, I obtain az  and corrz  which correspond the normalized impedance 

values obtained after normalizing the cavity impedance ( Z ) with the measured 

radiation impedance ( a
radZ - obtained from a

radS ), and the corrected-radiation 

impedance ( corr
radZ - obtained from corr

radS ). I then convert az  and corrz  to the appropriate 

normalized scattering coefficients as  and corrs  respectively using Eq.(2.8).  

 

Fig. 9.6: (a) shows the probability density function (PDF) of the phase of  as  (left) 

and corrs (right) in the frequency range of 6.8 to 7.8 GHz. (b) shows the probability 
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density function (PDF) of the phase of  as  (left) and corrs (right) in the frequency 

range of 9.5 to 10.5 GHz. 

 

To evaluate if the normalization process using the corrected-radiation 

measurement is effective, I look at the phase of the normalized scattering coefficient 

(which has been shown to be uniformly distributed between π−  and π ). I take 1GHz 

frequency windows from the frequency range of 3 to 18 GHz, and determine the 

phase of as  and corrs  values that lie in these windows. Figure 9.6 (a) shows the 

probability density function (PDF) of the phase of  as  (left) and corrs (right) in the 

frequency range of 6.8 to 7.8 GHz. It can be observed that the short-ray orbits 

manifest themselves as deviations from the perfectly uniform distribution for the 

phase of as . However, the agreement with the perfectly uniform distribution seems to 

be much better for the PDF of the phase of corrs . Encouraged by this result, I chose 

another frequency range of 9.5 to 10.5 GHz, and determined the phase of as and corrs  

values that lie in this frequency window. The PDFs of the phase of  as  (left) and 

corrs (right) are shown in Fig. 9.6(b). In this case, I observe that the PDF of the phase 

of  as  appears to be in much better agreement with the perfectly uniform distribution. 

Thus, I am presently not in a position to conclusively prove the effectiveness of the 

“radiation impedance” correction process due to the effects of short-ray orbits. This 

correction scheme would perhaps be more effective if performed in the impedance-

domain rather than in the scattering-domain as shown above. The issue of short-ray 

orbits leading to systematic errors in the measured radiation-case data thus deserves 

further attention both on the theoretical and experimental fronts. 
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9.1.4 Experimentally Exploring Broken-Time-Reversal-Symmetric Wave-Chaotic 

Impedance, Admittance and Scattering Fluctuations 

 

 

Fig. 9.7: Random Matrix Theory predictions for the PDF of the real part (black line- 

TRS, red line- BTRS) of the normalized impedance eigenvalues is shown for the 

same value of the cavity loss-parameter ( 1=α ). 

 

The breaking of time-reversal-symmetry presents a whole new series of 

theoretical predictions from Random Matrix Theory for the universal fluctuations in 

the impedance, admittance and scattering properties of wave-chaotic systems. These 

systems are now described by the Gaussian Unitary Ensemble (GUE) of random 

matrices (See chapter 1) and the universal fluctuations are predicted to be very 

different from corresponding predictions for the Time Reversal Symmetric case. An 
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example is shown in Fig. 9.7, where the PDF of the real part (black line- TRS, red 

line- BTRS) of the normalized impedance eigenvalues is shown for the same value of 

the cavity loss-parameter ( 1=α ) (also see Eq.(2.5) and Eq. (2.6)). Another example, 

is shown in Fig. 9.8 for the universal conductance fluctuations PDFs for two wave-

chaotic systems- TRS (blue line) and BTRS (red line) with the same degree of 

dephasing ( 18=γ ) within the quantum system [59].  

 

Fig. 9.8: Prediction from [59] for the PDF of the conductance (G) as defined in 

chapter 6 for the TRS case (blue) and the BTRS case (red) with the dephasing 

parameter ( 18=γ ). 

 

In BTRS systems, the presence of an anisotropic media within the wave-

chaotic cavity that has complex off-diagonal terms in its permittivity or permeability 
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tensors, results in the Helmholtz wave equation becoming complex (and therefore not 

symmetric upon the reversal of time i.e., tt −→ ). Experimentally, this can be 

realized by placing a magnetized ferrite along one of the inner side-walls of the cavity 

[55]. One of the exciting phenomena induced upon breaking time reversal symmetry 

is the effect of “weak localization”. Weak localization occurs in time reversal 

symmetric systems due to coherent back-scattering of the time-forward and time-

reversed paths of the waves [90], and leads to an enhancement of the average 

reflection coefficients in such systems. Thus, in essence, the waves seem to 

“remember” which port they entered the cavity from and prefer to exit the cavity 

through the same port. This is not true in BTRS systems.  

Some experimental issues that should be considered when using ferrites to 

induce time reversal symmetry breaking is that ferrites tend to be very lossy, thereby 

inadvertently increasing the α -value of the system. The non-reciprocal phase shift 

introduced by the ferrites is also limited to small frequency ranges. Thus, in order to 

obtain experimental data over large frequency ranges, an array of different types of 

ferrites would perhaps be required. 
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9.1.5 Role of Scars 

 

Fig. 9.9: A scarred wavefunction of the wave-chaotic cavity at 12.57 GHz is shown. 

The blue (red) regions indicate regions of high (low) field intensity (wavefunction 

magnitude). The enhanced wavefunction magnitudes (blue regions) are found in the 

vicinity of the unstable classical periodic orbit (shown as a dashed black line). 

 

One of the basic assumptions of the Random Coupling Model is the 

applicability of the Random Plane Wave Hypothesis for the waves within the wave-

chaotic cavity. Under this hypothesis, the energy is homogenously distributed 

amongst the different higher-order modes of the cavity. However, [91, 92] has shown 

that in certain cases, the eigenmodes of wave-chaotic cavities show deviations from 

the random plane wave hypothesis. Such eigenmodes, called “scars”, have enhanced 

wavefunction magnitudes and are found in the vicinity of unstable classical periodic 
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orbits. An example of such a scarred eigenmode in the wave-chaotic cavity is shown 

in Fig. 9.9 at 12.57GHz. Scarred wavefunctions are not treated by the Random 

Coupling Model or Random Matrix Theory. The study of such wavefunctions 

requires a different mathematical approach using semi-classical techniques such as 

the Gutzwiller trace formula [13] which should be pursued and incorporated into the 

Random Coupling Model. 

 

9.1.6 Formulating a Time-Domain Version of the Random Coupling Model   

The Random Coupling Model as it stands now is formulated in the frequency 

domain. Extensions to the time domain are particularly interesting especially to the 

EMC and HPM-effects community, as it gives researchers and engineers the chance 

to study the effects of Pulsed RF and Electromagnetic Pulses on complicated 

enclosures. Recently, a strong theoretical and experimental endeavor has been 

initiated by Hart, Antonsen, Ott, Bertrand and Anlage to study the nature of voltage 

fluctuations and power-decay statistics in such wave-chaotic systems when excited by 

an electromagnetic pulse. Preliminary results have proved very promising and should 

eventually yield a novel insight into the interaction of pulses with complicated cavity-

enclosures. 
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 Appendix A- The “Terrapin RCM Solver v1.0” User’s Guide 
 

 
Fig. A.1: The “Terrapin RCM Solver v1.0” CD Label 
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A.1 Introduction 

The Terrapin RCM Solver v1.0 is a first generation stand-alone, GUI software 

that utilizes the “Random Coupling Model”(RCM) and the “RCM Induced Voltage 

Algorithm” to make statistical predictions for the induced voltages at specific points 

within a complicated, real-world 2D or 3D enclosure given a minimum of user-

specified input information. In addition, the software has the capability to accurately 

determine universal and detail-independent impedance, admittance and scattering 

fluctuations in real-world 2D and 3D enclosures. The current version of the software 

is written for 2-port, 2D or 3D ray-chaotic enclosures. Extensions to this software to 

other cases can be explored in consultation with the authors.  

We strongly encourage the user to evaluate this software and compare its 

predictions with independent measurements on real-world enclosures. We urge you to 

contact us regarding your comments/criticisms so that we may improve the design 

and functionality of future versions of this software.  

 

A.2 Installation: Windows XP 

 The CD comes equipped with all the files necessary to run this software. In 

addition, the user is provided with some sample data-sets with which to familiarize 

himself/herself with the software and its functionality. 

 The software and all associated files are located in the folder “Terrapin RCM 

v1.0” on the CD. 
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1. Copy the folder “Terrapin RCM v1.0” on to your hard-disk. 

2. Open the copied folder “Terrapin RCM v1.0” which is now present on your 

hard-disk. 

3. Click on the file “MCRInstaller.EXE”. The contents of this file will now 

extract on to your hard-disk. This may take a few minutes depending upon 

processor speed. This is only a one-time operation. It is not required to run 

this step every time you use the software. During this extraction process, the 

Matlab Component Runtime (MCR) compiler and standard matlab libraries 

are installed. 

4. Once the extraction process has completed, the software is now ready to use. 

5. Click on the file “terprcm.EXE” to initiate the software. A status-prompt 

screen should appear for about 3 seconds following which the title screen of 

the Terrapin RCM v1.0 should open. See screenshot on next page. 
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Fig. A.2: Title-screen of the “Terrapin RCM Solver v1.0” 

A.3 Navigating “Terrapin RCM Solver v1.0” 

 The software is designed to operate in 3 modes of operation (also known as 

“solution types”).  

 

Generate RMT z, s [Mode 1]:  

In this mode, the user is prompted to specify the value of the cavity loss-

parameter α which determines the shapes and scales of the universally fluctuating 

impedance and scattering matrix of a complicated enclosure. The software then uses 

this value of α to numerically generate a large ensemble of these universally 

fluctuating quantities and allows the user to export these quantities to a file. 
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Normalize Measured Cavity Data [Mode 2]:  

In this mode, the user is prompted to supply the measured cavity and radiation 

scattering matrix files of a real-world enclosure. The software then uses the “Random 

Coupling Model” to uncover the universal fluctuations in the impedance, admittance 

and scattering matrix of the real-world enclosure. The software also has the 

functionality of calculating the ONERA- Scattering Ratio and the Maryland-

Impedance Ratio from the user-supplied data files. 

 

Predict Induced Voltage PDFs [Mode 3]:  

In this mode, the user is prompted to supply the measured/numerically 

generated radiation scattering matrix file for the ports of interest within a complicated 

real-world enclosure. The user is also prompted to specify the value of the cavity 

loss-parameter α. The software then determines the distribution of the induced 

voltages on the second port for a user-specified excitation at port-1. This mode works 

on the formalism of the “RCM Induced Voltage Algorithm”. 
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Fig. A.3: Navigating the “Terrapin RCM Solver v1.0” 

 

Recovering from an unstable state: 

In the event that the software enters an undesirable state. The user is provided 

with a red “RESET” button on the upper-right hand of the screen. This has the effect 

of terminating all current run-time processes associated with the Terrapin RCM 

Solver v1.0, clearing the memory and reinitiating the compiler. The software returns 

back to the initial title-screen and awaits further user action. 
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Fig. A.4: The use of the RESET button 

 

A.4 Tutorial: Generating RMT z,s [Mode 1] 

 In this section we provide the user with a step-by-step procedure to operate 

the “Terrapin RCM Solver v1.0” in Mode 1. In this mode, the user is prompted to 

specify the value of the cavity loss-parameter α which determines the shapes and 

scales of the universally fluctuating impedance and scattering matrix of a complicated 

enclosure. The software then uses this value of α to numerically generate a large 

ensemble of these universally fluctuating quantities and allows the user to export 

these quantities to a file. 
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1. Upon executing the Terrapin RCM Solver v1.0 and arriving at the Title-

screen, click the radio-button entitled “Generating RMT z,s [Mode 1]”. 

The following screen will appear. 

 

 

Fig. A.5: Screenshot of Mode 1 

 

2. The user is prompted to specify the Cavity-Loss Parameter α. The 

software provides two options- Simplified OR Advanced. In the 

simplified mode, the user is prompted to directly specify the value of α. In 

the advanced mode, the user has greater flexibility and can use the 

software to calculate the value of α for a specific cavity setup. For 
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simplified mode operation go to step 3. For advanced mode operation go 

to step 7. 

3. Clicking the radio-button marked “Simplified” will bring up the following 

screen.  The user can now directly enter the value of the Cavity-Loss 

Parameter in the space provided. The Cavity-Loss Parameter is a non-

negative real number, e.g. 0, 2.5, 3.154, etc.  

 

 

Fig. A.6: Screenshot of Mode 1-Simplified 
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4. The user can then specify the “Number of Renditions” in the space 

provided. Typically, a value of 50,000 or more provides a good statistical 

estimate for the quantities to be determined. This will result in 50,000 

impedance or scattering matrices to be written to the output files. 

5. The user can now specify the output impedance and scattering matrix 

filenames in the appropriate space provided. e.g. “zout.txt” and “sout.txt”. 

NOTE: the “.txt” extension is required. You can also specify a “.dat” 

extension if necessary. 

6. Now press “EXECUTE” and sit back, relax... A progress bar should 

appear indicating the percentage of the process that has completed. When 

the process is finished, the resultant universal impedance and scattering 

matrix quantities are stored in the user-specified filenames in the same 

directory as the software. 

7.  Clicking the radio-button marked “Advanced” will bring up the following 

screen. 
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Fig. A.7: Screenshot of Mode 1- Advanced 

 

8. In the “Advanced” mode, the user can allow the software to determine the 

value of the Cavity-Loss Parameter α, for a specific setup. 

9. Click on either “2-D Cavity” OR “3-D Cavity” depending upon your 

desired setup. 

10. Enter the Center Frequency in GHz in the space provided , e.g. 2, 0.075, 

etc. 

11. Enter the Volume in cubic meters if you have chosen the “3-D Cavity” 

option in step 9; else enter the Surface-Area of the cavity in square meters 

if you have chosen the “2-D Cavity” in step 9. 
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12. Enter the typical value of Cavity Q that you would expect for your setup at 

the frequency specified in step 10. 

13. Now follow steps 4, 5 and 6. At the end of the process, the resultant value 

of the Cavity-Loss Parameter that corresponds to your input parameters in 

steps 9,10,11 will be displayed in the space marked “Result: Cavity-Loss 

Parameter”. 

 

Format of the output files from Solution Type 1 (Mode 1): 

 Assume that the filenames that correspond to the output impedance and output 

scattering matrix files are “zout.txt” and “sout.txt” respectively. Each file will contain 

a large number  (as specified by the value of the “Number of Iterations”) of real-

numbers that correspond to the normalized (universal) impedance and scattering 

matrices. A typical file structure will look as below: 
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Fig. A.8: Format of the output ASCII file generated by Mode 1 

  

where zxy or sxy,(x,y=1,2) represent the elements of the z or s matrix with 

usual electromagnetic convention. Each row is a matrix that represents the cavity 

Impedance or Scattering matrix for a given value of α when the driving ports are 

perfectly-coupled (ideally-matched) to the cavity. The list of numbers shown in the 

figure above is purely for the purposes of showing the user how the output data file is 

formatted. It is NOT  actual data generated by the software. 
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A.5 Tutorial: Normalize Measured Cavity Data [Mode 2] 

In this section we provide the user with a step-by-step procedure to operate 

the “Terrapin RCM Solver v1.0” in Mode 2. In this mode, the user can use the 

software to uncover and plot universal fluctuations in the impedance, admittance and 

scattering matrices for a user-supplied cavity data-file. The software makes use of the 

measured cavity scattering matrix and the measured cavity radiation matrix files 

along the lines of the impedance-normalization process of the Random Coupling 

Model.  

For the benefit of the first-time user, we have provided two sample data files- 

“Scav.txt” and “Srad.txt”. The file “Scav.txt” contains 104 measurements of a 3D 

mode-stirred cavity which is driven by two ports in the frequency range of 4-5 GHz 

(in 300 equi-spaced frequency steps). The file “Srad.txt” contains a single 

measurement of the radiation scattering matrix of the two driving ports in the 

frequency range of 4-5GHz (in 300 equi-spaced frequency steps). 

 

1. Upon executing the Terrapin RCM Solver v1.0 and arriving at the Title-screen, 

click the radio-button entitled “Normalize Measured Cavity Data [Mode 2]”. The 

following screen will appear. 
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Fig. A.9: Screenshot of Mode 2 

 

2. Type “Scav.txt” in the space provided for the Cavity Scattering Matrix file name. 

3. Type “Srad.txt” in the space provided for the Radiation Scattering Matrix file 

name. 

4. Type “104” in the space provided for the Number of Cavity Renditions. 

5.  Click “LOAD”. A progress bar should appear indicating the percentage of the 

process that has completed. When the process is finished, the relevant values for 

the variances of the cavity Scattering and Impedance matrix elements will appear 

in their respective spaces. The software will also compute the resultant ONERA 

Scattering and Maryland Impedance Ratio for the user-supplied data set. 
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6. Now click “NORMALIZE”.  A progress bar should appear indicating the 

percentage of the process that has completed. When the process is finished, the 

relevant values for the quantities of the normalized (universal) cavity Scattering 

and Impedance matrix elements will appear in their respective spaces.  

7. The user can now also click on any of the buttons marked “Marginal” or “Joint” 

to plot the resultant universal marginal or joint PDFs of the impedance, 

admittance or scattering eigenvalues. (PDF=Probability Density Function). 

8. The user also has the option to export these normalized (universal) eigenvalues 

{real-part, imaginary-part} to a file. Specify the name of the files where you 

would like to store the normalized impedance,admittance and scattering 

eigenvalues and then click “EXPORT”. A progress bar should appear indicating 

the percentage of the process that has completed. 

 

The formatting for the Scav.txt data file is shown on the next page. Please format 

your own measured cavity data sets as shown in order to successfully use this 

software. Make sure your measured cavity and radiation files are in the same 

directory as the software. 

 

NOTE: The user-supplied Radiation Scattering Matrix data file should have the 

same format as above. However, there should be only one measured rendition of 

the radiation scattering matrix. 
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Fig. A.10: Formatting of user-supplied Cavity data files  

 

Shown above is the typical format for arranging your measured cavity 

scattering matrix file in order to successfully use this software. The measured data is 

arranged into 8 columns as shown. Each row represents the elements of one scattering 

matrix at a given frequency. If you are measuring the cavity scattering response from 

4 to 5 GHz in 1000 equi-spaced frequency steps, then there will be 1000 rows 

corresponding to the 1000 scattering matrix values measured at each frequency. This 

set of 1000 rows will correspond to the first measured rendition of the cavity. A 

similar set of 1000 rows which corresponds to your second measured rendition of the 

cavity will follow, as shown above. The difference between rendition sets is caused 

because of either moving some perturbation within the cavity such as a metal ball, or 
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a mode-stirrer which serves to significantly alter the field configurations within the 

cavity. 

The radiation scattering matrix file should also be constructed to conform to 

the format above. However, only one measurement of the radiation scattering matrix 

rendition set is required. 

 

 

Fig. A.11: Screenshot of Mode 2 showing plots for the Joint PDF of the Universal 

Impedance eigenvalues 

 

Shown above is a typical screenshot obtained upon successfully plotting the 

Joint PDF of the universal impedance eigenvalues. The figure in “yellow-red-black” 

color-code shows the joint PDF between the eigenvalue magnitudes of the normalized 
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(universal) impedance. The figure in the “red-green-blue” color-code shows the joint 

PDF between the eigenphases of the normalized (universal) impedance. 

 

A.6 Tutorial: Predict Induced Voltage PDFs [Mode 3] 

 In this section we provide the user with a step-by-step procedure to operate 

the “Terrapin RCM Solver v1.0” in Mode 3. In this mode, the user can use the 

software to make statistical predictions for the nature of the induced voltages at Port-

2 in a complicated 2D or 3D enclosure for a user-specified excitation at Port-1. 

1. Upon executing the Terrapin RCM Solver v1.0 and arriving at the Title-

screen, click the radio-button entitled “Predict Induced Voltage PDFs 

[Mode 3]”. (PDF=Probability Density Function). The following screen 

will appear. 
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Fig. A.12: Screenshot of Mode 3 

 

2. The user can then enter the file name of the user-supplied radiation 

scattering matrix file. For instructions on user-supplied files refer to pages 

11, 12. For the benefit of the first-time user, we have provided the file 

“Srad.txt” which contains a single measurement of the radiation scattering 

matrix of two driving ports in a 3D mode-stirred cavity, in the frequency 

range of 4-5GHz (in 1000 equi-spaced frequency steps). Enter “Srad.txt” 

in the space provided. 

3. Enter the start and stop frequencies in GHz in the appropriate spaces. Use 

“4” and “5” for Start and Stop frequency if using Srad.txt. 
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4.  The user can then specify the Cavity-Loss Parameter in either the 

Simplified mode or Advanced Mode. Refer to pages 7,8 for further details. 

5. Click “EVALUATE”. A progress bar should appear indicating the 

percentage of the process that has completed. When the process is 

finished, the resultant value of the Cavity-Loss Parameter is displayed if 

the “Advanced” option is selected in step 4.  

6. The user can then select an appropriate excitation at port-1 of the cavity. 

The current version supports three port-1 radiated power-profiles : 

a. Flat Response : User-specified value of Po Watts from f1 to f2. 

b. Sinc-Squared Response: User-specified value of Po Watts from f1 

to f2. 

c. Gaussian Response: User-specified value of Po Watts from f1 to f2. 

7. Upon selecting the desired port-1 excitation by specifying the value of Po 

(in Watts), the user can click the appropriate “DISPLAY” button to plot 

the distribution of the real, imaginary, magnitude and phase of the induced 

voltages at port-2 for the user-specified excitation at port-1.  
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Fig. A.13: Screenshot of Mode 3 showing the PDF of induced voltages on port-2 for a 

2-Watt peak Sinc-Square excitation at Port-1. 

 

Shown above is a typical screenshot obtained upon successfully plotting the 

PDF of Induced Voltages on Port-2 for a 2-Watt peak Sinc-Square excitation from 

Port-1. 
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Appendix B: Summary of the different methods to estimate the 

cavity loss parameter - α 

Fig. B.1 : Procedure, advantages and disadvantages of estimating the cavity loss-

parameter from first principles. 
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Fig. B.2: Procedure, advantages and disadvantages of estimating the cavity loss-

parameter by comparing the PDFs of Re[z] and Im[z] obtained from measurements 

with corresponding PDFs numerically generated using α as a fitting parameter. 
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Fig. B.3: Procedure, advantages and disadvantages of estimating the cavity loss-

parameter from the relation between the variance of Re[z] and Im[z] PDFs, and  α 

obtained from Random Matrix Monte Carlo simulations. 
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Fig. B.4: Procedure, advantages and disadvantages of estimating the cavity loss-

parameter from the relation between the variance of Re[z] and Im[z] PDFs, and  α 

obtained from the Random Coupling Model. 
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Fig. B. 5: Procedure, advantages and disadvantages of estimating the cavity loss-

parameter from the relation between the dephasing parameter (γ) and <T>. 
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Fig. B.6: Procedure, advantages and disadvantages of estimating the cavity loss-

parameter from the impedance-based Hauser-Feshbach relation. 
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Appendix C: Estimating the cavity Q from the measured cavity 

S11 data 

In order to estimate the value of the cavity loss-parameter α  from first 

principles (
Qk

k

n
2

2

Δ
=α ) [Method-1 of Appendix B], it is necessary to make an 

estimate of the quality factor of the cavity at a given frequency. Here, cfk /2π=  is 

the wavenumber for the incoming frequency f and 2
nkΔ  is the mean-spacing of the 

adjacent eigenvalues of the Helmholtz operator, 22 k+∇ , as predicted by the Weyl 

Formula [15] for the closed system. In my dissertation, I make use of the loaded 

cavity quality factor (Q ), which accounts for all internal dielectric losses and cavity-

ohmic losses as well as dissipation through the coupled ports (see chapter 2). For a 

cavity driven by two ports, Q  can be determined from the transmitted power-vs-

frequency curve ( 2
21 |)(| fS ), which is a maximum at the resonant frequency (see Fig. 

C.1 (a)). The quantity Q  is then the ratio of the resonant frequency to the 3-dB 

bandwidth of the resonance curve [87] and represents the ratio of stored energy to 

power dissipated per cycle in the cavity. Methods to determine the Q of data like that 

shown in Fig. C.1(a) are discussed in [93]. 
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Fig. C.1: (a) Schematic showing the typical nature of a cavity resonance (blue curve) 

when measured from the transmitted power-vs-frequency 2
21 |)(| fS  curve. The 

cavity resonance manifests itself as a maximum in the measured 2
21 |)(| fS . (b) 

Schematic showing the typical nature of a cavity resonance (red curve) when 

measured from the reflected power-vs-frequency 2
11 |)(| fS  curve. The cavity 

resonance manifests itself as a minimum in the measured 2
11 |)(| fS . 

 

 To estimate the loaded cavity Q at a given frequency, for a cavity driven by a 

single port, the procedure is more elaborate [94] since the degree of coupling ( β ) 

between the port and the cavity has to be taken into account. The frequency-

dependent coupling coefficient β  is defined as the ratio of the power dissipated 

through the port to the power dissipated within the cavity-resonator due to dielectric 

and ohmic losses. The port is said to be “critically-coupled” if 1=β . In a one-port 

reflected-power measurement ( 2
11 |)(| fS ), a cavity-resonance manifests itself as a 

minimum in the reflected power-vs-frequency curve (see Fig. C.1(b)). 
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 For a cavity coupled to a single port and if 1<β  (“under-coupled”), the 

numerical value of β  can be determined using 

||1
||1

o

o

ρ
ρ

β
+
−

= ,                                                   (C.1) 

where || oρ  is the value of |)(| 11 fS  at resonance. If 1>β  (“over-coupled”), the 

inverse of Eq.(C.1) is used to determine the value of β . A quick check to estimate if 

the cavity is under-coupled or over-coupled to the port over a given frequency range 

is to look at the measured cavity 11S  on a polar chart { ]Im[],Re[ 1111 SS } (also known 

as a “Smith chart”). The cavity resonances will then appear as circles (known as Q-

circles). The Q-circle for an over-coupled cavity will encircle the origin of the Smith 

chart, while the Q-circle for an under-coupled cavity will not. From the nature of the 

blue trace in Fig. 4.15, it is evident that the cavity is strictly under-coupled to the port 

at all frequencies from 6 to 12 GHz. 

 After estimating the value of β , the value of the reflection coefficient  ( 1ρ ) 

corresponding to the width of the resonance curve can be estimated as, 

2

2
2

1 )1(
1||

β
βρ

+
+

= .                                       (C.2) 

By defining  of   to be that frequency at which the reflection coefficient equals || oρ , 

and 1f  , 2f  as the two frequencies around of  at which the reflection coefficient 

equals 2
1 || ρ , the loaded quality factor Q  is defined as , 

|| 12 ff
f

Q o

−
= .                                         (C.3) 

The unloaded quality factor ( ulQ ) is then defined as, 
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QQul )1( β+= .                                         (C.4) 

 I adopt the procedure outlined above to estimate the loaded quality factor of 

the cavity when driven by a single port. The red curve in Fig. C.2 shows one 

measurement of 2
11 |)(| fS  of the Loss-Case 0 quarter bow-tie cavity, explained in 

section 3.1, for one configuration of the perturbers. The cavity resonances show up as 

minima in the measured 2
11 |)(| fS . The data represented by the red curve constitutes 

a single-rendition of the measured cavity S11 data and constitutes a subset of the one-

hundred renditions that makes up the ensemble cavity S11 data-set used in Fig. 4.4 

(stars). The estimated loaded quality factor for two typical resonances along with the 

corresponding values of the parameters ( 21
2

1
2 ,,,||,||, fffoo ρρβ ) for each resonance 

is indicated in Fig. C.2. By employing the prescription outlined above and by 

analyzing other renditions of the measured cavity S11 data, I estimate that the mean 

value of the loaded quality factor for the cavity to be about ~ 300 over the frequency 

range of 7.2 to 8.4 GHz. This yields an α -value of about 0.8 for the data set 

represented by the stars in Fig. 4.4 Note that my estimate of the loaded quality factor 

is approximate due to the presence of over-lapping resonances observed in the 

measured cavity reflection coefficient. The presence of over-lapping resonances can 

potentially lead to under-estimating the cavity quality factor. More elaborate 

procedures and algorithms to accurately estimate the  quality factor in the presence of 

such over-lapping resonances is outlined in [95, 96, 97, 98].  
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Fig. C.2: The nature of the cavity (see section 3.1) 2
11 || S  as a function of frequency, 

for one possible orientation of the perturbers, is shown as the red curve. The cavity 

resonances show up as minima in the measured  2
11 || S . The values of the parameters 

21
2

1
2 ,,,||,||, fffoo ρρβ  for two resonances (referenced by the black and blue 

dashed-grid lines) yield values of the loaded cavity-Q to be about 340 and 203 

respectively. The presence of over-lapping resonances is clearly visible. By 

examining several such resonances, I estimate the average cavity-Q to be about 300 

for this frequency range of 7.2GHz to 8.4GHz. 
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Appendix D: Derivation of the relation between the dephasing 

parameter (γ) and the cavity loss-parameter (α) 

The relation between the dephasing parameter (γ) in the ballistic quantum dot 

to the loss-parameter (α) in the microwave cavity can be derived from the exact 

correspondence between the stationary Schrödinger equation for a two-dimensional 

quantum billiard and the classical wave-equation for a quasi-two-dimensional 

microwave cavity of the same shape. This correspondence translates into the 

mathematical equivalence between the continuity equation for the probability density 

in the quantum system and the Poynting theorem for the electromagnetic cavity.  

From Ref.[99], the relation between the probability density and the current 

density in the quantum billiard for an imaginary source potential from the “voltage 

probe” model of Ref.[59] is given by, 

2
2

||2|| ψψ
h

rr
IVj

t
−=⋅∇+

∂
∂ ,                                      (D.1) 

where, the term ψ   represents the quantum-mechanical wave-function of the particle 

in the quantum billiard and )(
2

ψψψψ ∇−∇
−

= ∗∗

m
jj hr

 is the current density 

( 1−=j ). The imaginary potential term is given by 
π

γ
4
Δ

=IV [59], with Δ  being the 

characteristic eigen-energy spacing in the quantum billiard. 

Now for the microwave cavity filled with a linear dissipative dielectric 

medium of dielectric constant ε , the Poynting theorem gives, 

2||)Im( ES
t

U εω−=⋅∇+
∂

∂ rr
,                                   (D.2) 
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where, the quantity U  represents the electromagnetic energy density and plays a role 

analogous to the probability density in Eq.(D.1). While the quantity S
r

 represents the 

energy flow out of the system and is analogous to the current density in Eq.(D.1).  

By directly comparing Eq.(D.1) and Eq.(D.2), and under the assumption that 

the voltage-probe model describing spatially uniform dephasing is equivalent to the 

imaginary potential model describing spatially uniform cavity losses [59], we get 

Q
VI ω

⇔
h

2 ,                                                         (D.3) 

where the dielectric losses in the microwave cavity are related to the cavity quality 

factor through, 
]Im[

1
ε

≈Q . 

 Substituting 
π

γ
4
Δ

=IV  in Eq.(D.3) we get, 

ω
ω

π
γ

Δ
=

Δ
Δ

Q
)

/
1(

4
2

hh
,                                            (D.4) 

where the LHS and RHS of Eq.(D.4) has been normalized by the respective 

characteristic energy(frequency) spacing to yield dimensionless quantities. 

By reducing the RHS of Eq.(D.4) as follows, 

2

22

2
2

2
2

2
kQ

k
kQk

k
kQ

k
Q Δ

=
Δ

=
Δ

=
Δω
ω ,                                (D.5) 

and substituting back in Eq.(D.4), we get παγ 4= , with )/( 22 Qkk Δ=α . 

 



 

 240 
 

Bibliography 
 

[1] S. Glasstone, “The Effects of Nuclear Weapons”, (US Dept. of Defense and 

Energy Research and Development Administration, Edited 1962, Revised February 

1964). 

[2] “Dawn of the E-bomb”, IEEE Spectrum, Nov. 2003. 

[3] Carlo Kopp, “The Electromagnetic Bomb- A Weapon of Electrical Mass 

Destruction”, infoWARcon 5 Conference Proceedings, NCSA, Arlington VA USA, 

3-31. 

[4] S. M. Sze, “Physics of Semiconductor Devices”, (2nd Edition, John Wiley and 

Sons, Inc. 1981). 

[5] Clayton R. Paul, “Introduction to Electromagnetic Compatibility”, (John Wiley 

and Sons,Inc. 2006). 

[6] J. -P. Parmantier, Computing and Control Engineering Journal, 9, 52 (1998). 

[7] R. Holland and R. St. John, “Statistical Electromagnetics”, (Taylor and Francis, 

London, 1999), and references therein. 

[8] P. Corona, G. Larmiral, and E. Paolini, IEEE Trans. EMC, 22, 2 (1980). 

[9] R. H. Price, H. T. Davis, and E. P. Wenaas, Phys. Rev. E., 48, 4716 (1993). 

[10] D. Hill, IEEE Trans. EMC, 36, 294 (1994). 

[11] D. Hill, IEEE Trans. EMC, 40, 209 (1998). 

[12] L. Cappetta, M. Feo, V. Fiumara, V. Pierro and I. M. Pinto, IEEE Trans. EMC, 

40, 185 (1998). 



 

 241 
 

[13] H.- J. Stöckmann, “Quantum Chaos”, (Cambridge University Press, Cambridge 

1999), and references therein. 

[14] E. P. Wigner, Ann. Math. 53, 36 (1951); 62, 548 (1955); 65, 203 (1957); 67, 325 

(1958). 

[15] E. Ott, “Chaos in Dynamical Systems”,(Cambridge University Press 1993). 

[16] P. So, Ph.D Dissertation, University of Maryland (1995). (also see Ref. [22]). 

[17] O. Bohigas, M. J. Giannoni and C. Schmidt, Phys. Rev. Lett. 52, 1 (1984). 

[18] S. W. McDonald and A. N. Kaufman, Phys. Rev. Lett. 42, 1182 (1979); Phys. 

Rev. A. 37, 3067 (1988). 

[19] R. L. Weaver, J. Acoust. Soc. Am. 85, 1005 (1989).  

[20] C. Ellegaard, T. Guhr, K. Lindemann, H. Q. Lorensen, J. Nygård, and M. 

Oxborrow, Phys. Rev. Lett. 75, 1546 (1995). 

[21] L. L. A. Adams, B. W. Lang, and A. M. Goldman, Phys. Rev. Lett. 95, 146804 

(2005). 

[22] P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett. 74, 2662 (1995). 

[23] M. L. Mehta, “Random Matrices”, (Academic Press, San Diego, 1991). 

[24] F. Haake, “Quantum Signatures of Chaos” (Springer-Verlag, Berlin 1991).  

[25] X. Zheng, T. M. Antonsen and E. Ott, Electromagnetics 26, 3 (2006). 

[26] X. Zheng, T. M. Antonsen and E. Ott, Electromagnetics 26, 37 (2006). 

[27] Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000). 

[28] R. U. Haq, A. Pandey and O. Bohigas, Phys. Rev. Lett. 48, 1086 (1982). 

[29] L. Ericson, Ann. Phys. 23, 390 (1963). 

[30] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).  



 

 242 
 

[31] D. Agassi, H. A. Weidenmuller, and G. Mantzouranis, Phys. Rep. 22, 145 

(1975). 

[32] P. A. Mello, P. Pereyra and T. H. Seligman, Ann. Phys. 161, 254 (1985). 

[33] P. W. Brouwer, Phys. Rev. B. 51, 16878 (1995). 

[34] D. V. Savin, Y. V. Fyodorov, and H. –J. Sommers, Phys. Rev. E 63, 035202 

(2001). 

[35] R.A.Mendez-Sanchez, U. Kuhl, M. Barth, C.H. Kewenkopf and H.-J. 

Stöckmann, Phys. Rev. Lett. 91, 174102 (2003). 

[36] U. Kuhl, M. Martinez-Mares, R. A. Mendez-Sanchez, and H. –J. Stöckmann, 

Phys. Rev. Lett. 94, 144101 (2005). 

[37] J. B. French, P. A Mello, and A. Pandey, Phys. Lett. 80B, 17 (1978). 

[38] A. Pandey, Ann. Phys. (N.Y) 119, 170 (1979). 

[39] H. Schanze, H.-J Stöckmann, M. Martinez-Mares, C.H. Lewenkopf, Phys. Rev. 

E 71, 016223 (2005). 

[40] E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947). 

[41] S-H Chung, A. Gokirmak, D-H Wu, J. S. A. Bridgewater, E. Ott, T. M. 

Antonsen, and S. M. Anlage, Phys. Rev. Lett. 85, 2482 (2000). 

[42] E. Ott, Phys. Fluids 22, 2246 (1979). 

[43] M. V. Berry, “ Chaotic Behavior of Deterministic Systems. Les Houches 

Summer School 1981” (North-Holland, 1983). 

[44] J. D. Jackson, “Classical Electrodynamics”, (3rd Edition, John Wiley and Sons, 

Inc. 1993). 



 

 243 
 

[45] S. Hemmady, X. Zheng, T. M. Antonsen. E. Ott and S. M. Anlage, Phys. Rev. 

Lett. 94, 014102 (2005). 

[46] S. Hemmady, X. Zheng, T. M. Antonsen. E. Ott and S. M. Anlage, Phys. Rev. E. 

71, 056215 (2005). 

[47] Y. V. Fyodorov and D. V. Savin, JETP Lett., 80, 725 (2004). 

[48] D. V. Savin and H. –J. Sommers, Phys. Rev. E., 69, 035201 (2004). 

[49] (a) L. K. Warne, K. S. H. Lee, H. G. Hudson, W. A. Johnson, R. E. Jorgenson 

and S. L. Stronach, IEEE Trans. Antennas and Prop., 51, 978 (2003). (b) L.K. Warne, 

W.A. Johnson, R. E. Jorgenson, Sandia Report SAND2005-1505. 

[50] X. Zheng, Ph.D Dissertation, University of Maryland (2005). 

[51] C. E. Porter, “Statistical Theory of Spectra: Fluctuations”, (Academic Press-New 

York, 1965). 

[52] H. –J. Stöckmann and J. Stein, Phys. Rev. Lett., 64, 2215 (1990). 

[53] E. Doron, U. Smilansky, and A. Frenkel, Phys. Rev. Lett., 65, 3072 (1990). 

[54] A. Gokirmak, D. –H. Wu, J. S. A. Bridgewater and S. M. Anlage, Rev. Sci. 

Instrum., 69, 3410 (1998). 

[55] D. –H. Wu, J. S. A. Bridgewater, A. Gokirmak, and S. M. Anlage, Phys. Rev. 

Lett. 81, 2890 (1998). 

[56] J. Barthélemy, O. Legrand, and F. Mortessagne, Phys. Rev. E., 71, 016205 

(2005). 

[57] M. Barth, U. Kuhl, and H. –J. Stöckmann, Phys. Rev. Lett. 82, 2026 (1999). 

[58] S. Hemmady, X. Zheng, T. M. Antonsen. E. Ott and S. M. Anlage, Acta Physica 

Polonica A, 109, 65 (2006). 



 

 244 
 

[59] P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B., 55, 4695 (1997). 

[60] Y. V. Fyodorov, D. V. Savin and H. –J. Sommers, J. Phys. A., 38, 10731 (2005).  

[61] C. A. Balanis, “Advanced Engineering Electromagnetics”, (John Wiley and 

Sons, Inc. 1989). 

[62] S. Hemmady, X. Zheng, J. Hart, T.M. Antonsen , E. Ott and S.M. Anlage, Phys. 

Rev. E. 74, 036213 (2006).. 

[63] A.G Huibers, S.R. Patel and C.M. Marcus, Phys. Rev. Lett. 81, 1917 (1998). 

[64] S. Hemmady, J. Hart, X. Zheng, T.M. Antonsen , E. Ott and S.M. Anlage, 

accepted by Phys. Rev. B. (in press), cond-mat/0606650. 

[65] M. Büttiker, Phys. Rev. B 33, 3020 (1986). 

[66] C. H. Lewenkopf and A. Müller, Phys. Rev. A 45, 2635 (1992). 

[67] H. U. Baranger and P. A. Mello, Phys. Rev. B 51, 4703 (1995). 

[68] C. M. Marcus, R. M. Westervelt, P. F. Hopkins and A. C. Gossard, Phys. Rev. B. 

48, 2460 (1993). 

[69] K. B. Efetov, Phys. Rev. Lett. 74, 2299 (1995). 

[70] E. McCann and I.V. Lerner, J. Phys. Cond. Matt. 8, 6719 (1996). 

[71] M. R. Zirnbauer, Nucl. Phys. A 560, 95 (1993). 

[72] E. Doron, U. Smilansky and A. Frenkel, Physica D 50, 367 (1991). 

[73] M. Martínez-Mares and P. A. Mello, Phys., Rev. E 72, 026224 (2005). 

[74] B.L. Altshuler and B. D. Simons, “Mesoscopic Quantum Physics”, edited by E. 

Akkermans, G. Montambaux, J.-L. Pichard and J. Zinn-Justin. Elsevier, Amsterdam 

(1995). 

[75] P. Mohanty and R. A. Webb, Phys. Rev. Lett. 88, 146601 (2002). 



 

 245 
 

[76] N. Agraït, A. L. Yeyati and J. M. Ruitenbeek, Phys. Rep. 377, 81 (2003); and 

references therein. 

[77] E. Joos, et al., “Decoherence and the Appearance of a Classical World in 

Quantum Theory”, Springer (December 1, 1996). 

[78] H. -D. Gräf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C. Rangacharyulu, A. 

Richter, P. Schardt, and H. A. Weidenmüller, Phys. Rev. Lett. 69, 1296 (1992). 

[79] A. Kudrolli, S. Sridhar, A. Pandey, and R. Ramaswamy, Phys. Rev. E., 49, R11 

(1994). 

[80] M. Vraničar, M. Barth, G. Veble, M. Robnik, and H. –J. Stöckmann, J. Phys. A: 

Math. Gen. 35, 4929 (2002). 

[81] X. Zheng, S. Hemmady, T. M. Antonsen, S. M. Anlage, and E. Ott, Phys. Rev. 

E., 73, 046208 (2006). 

[82] C. Fiachetti and B. Michielsen, Electron. Lett. 39, 1713 (2003). 

[83] W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952). 

[84] W. A. Friedman and P. A. Mello, Ann. Phys., 161, 276 (1985). 

[85] C. A. Balanis, “Antenna Theory: Analysis and Design”, (3rd Edition, John Wiley 

and Sons, Inc. 2005). 

[86] P. Bhatria, Inder Bahl, R. Garg, and A. Ittipiboon, “ Microstrip Antenna Design 

Handbook”, (Artech House antennas and propagation library, 2001). 

[87] D. Pozar, “ Microwave Engineering”, (3rd Edition, John Wiley and Sons, Inc. 

2005). 

[88] J. Barthélemy, O. Legrand, and F. Mortessagne, Europhys. Lett. 70, 162 (2005). 

[89] D. V. Savin, O. Legrand, and F. Mortessagne, cond-mat/0607810. 



 

 246 
 

[90] P. Mello and N. Kumar, “Quantum Transport in Mesoscopic Systems: 

Complexity and Statistical Fluctuations”, (Oxford University Press, 2004). 

[91] E. J. Heller, Phys. Rev. Lett., 53, 1515 (1984). 

[92] T. M. Antonsen, E. Ott, Q. Chen, and R. N. Oerter, Phys. Rev. E., 51, 111 

(1995).  

[93] P. J. Petersan and S. M. Anlage, J. Appl. Phys. 84, 3392 (1998).  

[94] D. E. Steinhauer, Ph.D Dissertation, University of Maryland (2000). 

[95] W. Cassing, M. Stingl and A. Weiguny, Phys. Rev. C., 26, 22 (1982). 

[96] K. Grosh, E. G. Williams, J. Acoust. Soc. Am. 93, 836 (1993). 

[97] H. Alt, P. von Brentano, H. –D Gräf, R. –D. Herzberg, M. Philipp, A. Richter 

and P. Schardt, Nuc. Phys. A 560, 293 (1993). 

[98] H. Alt, P. von Brentano, H. –D Gräf, R. Hofferbert, M. Philipp, H. Rehfeld,  A. 

Richter and P. Schardt, Phys. Lett. B. 366, 7 (1996). 

[99] L. D. Landau and E. M. Lifshitz, “Quantum Mechanics (Non-relativistic 

Theory)”, Butterworth-Heinemann, Vol. 3, 3rd Edition, (1981). 


	Sameer D. Hemmady, Doctor of Philosophy, 2006
	Dedication
	 Acknowledgements
	 Table of Contents
	List of Figures
	Chapter 1: Introduction
	1.1 Need for Statistical Electromagnetism
	1.2 Wave Chaos
	1.3 Universal Aspects of Wave-Chaotic Systems
	1.4 Random Matrix Theory
	1.5 Outline of the Dissertation

	 Chapter 2: The Random Coupling Model
	2.1 Motivation for the “Random Coupling Model”
	2.2 Formulating the “Random Coupling Model”
	2.3 The “Radiation Impedance” normalization process
	2.4 Extending the “Radiation Impedance” Normalization to Multi-Port Systems
	2.5 Generating Normalized Impedance and Scattering matrices using Random Matrix Monte Carlo Simulations

	 Chapter 3: Experimental Setup and Data Analysis
	3.1 Experimental Setup and Data Analysis- One Port
	3.2 Experimental Setup and Data Analysis- Two Ports

	 Chapter 4: Universal Fluctuations in One-Port Impedance and Scattering Coefficients of Wave-Chaotic Systems
	4.1 Experimental Results for One-Port Normalized Impedance  
	4.1.1 Effect of loss on cavity impedance and strength of the radiation impedance to quantify non-ideal port coupling
	4.1.2 Uncovering the Normalized Impedance ( ) PDFs
	4.1.3 Universal Relation between the cavity loss-parameter   and the Variance of   and  
	4.1.4 Absorber Perimeter Ratio ( )

	4.2 Experimental Results for Normalized Scattering Coefficient  
	4.2.1 Statistical Independence of   and  
	4.2.2 Detail-Independence of  
	4.2.3 Variation of   with loss
	4.2.4 Relation Between Cavity and Radiation Reflection Coefficients
	4.2.5 Recovering Raw Cavity   given   and  

	4.4 Summary of Chapter 4 and Conclusions

	 Chapter 5:  Universal Fluctuations in 2-port Impedance, Admittance and Scattering Matrices of Wave-Chaotic Systems
	5.1 Experimental Results for the PDFs of the  and   eigenvalues
	5.1.1 Marginal PDFs of the   and  eigenvalues
	5.1.2 Variation of   with frequency for the different experimental loss-cases

	5.2 Importance of The Off-Diagonal Radiation Elements in  
	5.3 Marginal and Joint PDFs of    eigenvalues
	5.3.1 Statistical Independence of   and  
	5.3.2 Joint PDF of   eigenphases
	5.3.3 Joint PDF of eigenvalues of  †

	5.4 Summary of Chapter 5 and Conclusions
	 


	 Chapter 6:  Experimental Test of Universal Conductance Fluctuations By Means Of Wave-Chaotic Microwave Cavities
	6.1 Relation between the dephasing parameter( ) and the cavity loss-parameter( ) 
	6.2 Uncovering the Universal Conductance Fluctuations PDFs
	6.3 Validating Theoretical Predictions for the Mean and Variance of the UCF PDFs
	6.4 Summary of Chapter 6 and Conclusions

	 Chapter 7: Characterization of Impedance and Scattering Matrix Fluctuations of Wave-Chaotic Systems
	7.1 Experimental Results for   and  
	7.2 Summary of Chapter 7 and Conclusions

	 Chapter 8: Applications of the Random Coupling Model to Predicting HPM-Effects in 3-D, Real World Enclosures
	8.1 Proving the Existence of Wave-Chaotic Scattering in a Computer-Box Cavity
	8.2 Characterization of the Measured Radiation-Case Scattering Matrix Elements
	8.3 “Radiation Impedance” Normalization and the Applicability of Random Matrix Theory
	 8.3.1 Dyson’s Circular Ensemble for the Computer-Box Cavity
	8.3.2 Existence of Universal Impedance Fluctuations and applicability of         Random Matrix Theory
	 8.3.3 Variation of   with Frequency for the Computer-Box Cavity

	8.4 “RCM Induced Voltage Algorithm” for Prediction of Induced Voltage PDFs
	8.5 Predicting the Variance of Induced Voltages Using Hauser-Feshbach Relations
	8.6 Design Guidelines for HPM-Resistant Generic 3-D Complicated Enclosures
	8.7 Summary of Chapter 8 and Conclusions
	 

	 Chapter 9: Final Conclusions and Scope for Future Work
	9.1 Future Work
	9.1.1 Cryogenic and 3-D Wave-Chaotic Cavity Design
	 9.1.2 Homogeneous versus Inhomogeneous Cavity Losses
	9.1.3 Effects of Short-Ray Periodic Orbits in the Measured Radiation Case
	9.1.4 Experimentally Exploring Broken-Time-Reversal-Symmetric Wave-Chaotic Impedance, Admittance and Scattering Fluctuations
	9.1.5 Role of Scars
	9.1.6 Formulating a Time-Domain Version of the Random Coupling Model  


	  Appendix A- The “Terrapin RCM Solver v1.0” User’s Guide
	A.1 Introduction
	A.2 Installation: Windows XP
	A.3 Navigating “Terrapin RCM Solver v1.0”
	A.4 Tutorial: Generating RMT z,s [Mode 1]
	A.5 Tutorial: Normalize Measured Cavity Data [Mode 2]
	A.6 Tutorial: Predict Induced Voltage PDFs [Mode 3]

	Appendix B: Summary of the different methods to estimate the cavity loss parameter - 
	 Appendix C: Estimating the cavity Q from the measured cavity S11 data
	Appendix D: Derivation of the relation between the dephasing parameter () and the cavity loss-parameter ()
	 Bibliography

